Approximation Methods for Solutions of Differential and Integral Equations

Approximation Methods for Solutions of Differential and Integral Equations PDF Author: V. K. Dzyadyk
Publisher: VSP
ISBN: 9789067641944
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed.

Approximation Methods for Solutions of Differential and Integral Equations

Approximation Methods for Solutions of Differential and Integral Equations PDF Author: V. K. Dzyadyk
Publisher: VSP
ISBN: 9789067641944
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed.

Analysis of Approximation Methods for Differential and Integral Equations

Analysis of Approximation Methods for Differential and Integral Equations PDF Author: Hans-Jürgen Reinhardt
Publisher: Springer Science & Business Media
ISBN: 1461210801
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.

Approximation Methods for Solutions of Differential and Integral Equations

Approximation Methods for Solutions of Differential and Integral Equations PDF Author: V. K. Dzyadyk
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110944693
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
No detailed description available for "Approximation Methods for Solutions of Differential and Integral Equations".

Numerical Approximation Methods

Numerical Approximation Methods PDF Author: Harold Cohen
Publisher: Springer Science & Business Media
ISBN: 1441998365
Category : Mathematics
Languages : en
Pages : 493

Get Book Here

Book Description
This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.

Polynomial Approximation of Differential Equations

Polynomial Approximation of Differential Equations PDF Author: Daniele Funaro
Publisher: Springer Science & Business Media
ISBN: 3540467831
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.

Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations PDF Author: Paul Sacks
Publisher: Academic Press
ISBN: 0128114576
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Wavelet Based Approximation Schemes for Singular Integral Equations

Wavelet Based Approximation Schemes for Singular Integral Equations PDF Author: Madan Mohan Panja
Publisher: CRC Press
ISBN: 0429534280
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.

Methods of Analysis and Solutions of Crack Problems

Methods of Analysis and Solutions of Crack Problems PDF Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9789001798604
Category : Science
Languages : en
Pages : 578

Get Book Here

Book Description
It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

Numerical Solution of Integral Equations

Numerical Solution of Integral Equations PDF Author: Michael A. Golberg
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.

Analytical and Numerical Methods for Volterra Equations

Analytical and Numerical Methods for Volterra Equations PDF Author: Peter Linz
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.