Approximation Methods for Navier-Stokes Problems

Approximation Methods for Navier-Stokes Problems PDF Author: R. Rautmann
Publisher: Springer
ISBN: 3540385509
Category : Mathematics
Languages : en
Pages : 602

Get Book Here

Book Description

Approximation Methods for Navier-Stokes Problems

Approximation Methods for Navier-Stokes Problems PDF Author: R. Rautmann
Publisher: Springer
ISBN: 3540385509
Category : Mathematics
Languages : en
Pages : 602

Get Book Here

Book Description


Finite Element Methods for Navier-Stokes Equations

Finite Element Methods for Navier-Stokes Equations PDF Author: Vivette Girault
Publisher: Springer Science & Business Media
ISBN: 3642616232
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].

Approximation Methods for Navier-Stokes Problems

Approximation Methods for Navier-Stokes Problems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Approximation Methods for Navier-Stokes Problems

Approximation Methods for Navier-Stokes Problems PDF Author: R Rautmann
Publisher: Springer
ISBN: 9783662212356
Category :
Languages : en
Pages : 604

Get Book Here

Book Description


Navier-Stokes Equations

Navier-Stokes Equations PDF Author: Roger Temam
Publisher: American Mathematical Soc.
ISBN: 0821827375
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.

High-Order Methods for Incompressible Fluid Flow

High-Order Methods for Incompressible Fluid Flow PDF Author: M. O. Deville
Publisher: Cambridge University Press
ISBN: 9780521453097
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
Publisher Description

Implementation of Finite Element Methods for Navier-Stokes Equations

Implementation of Finite Element Methods for Navier-Stokes Equations PDF Author: F. Thomasset
Publisher: Springer Science & Business Media
ISBN: 3642870473
Category : Science
Languages : en
Pages : 168

Get Book Here

Book Description
In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.

Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems PDF Author: Roland Glowinski
Publisher: Springer Science & Business Media
ISBN: 3662126133
Category : Science
Languages : en
Pages : 506

Get Book Here

Book Description
This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.

The Navier-Stokes Equations

The Navier-Stokes Equations PDF Author: Hermann Sohr
Publisher: Springer Science & Business Media
ISBN: 3034805519
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Domain Decomposition Methods in Science and Engineering

Domain Decomposition Methods in Science and Engineering PDF Author: Ralf Kornhuber
Publisher: Springer Science & Business Media
ISBN: 3540268251
Category : Mathematics
Languages : en
Pages : 686

Get Book Here

Book Description
Domain decomposition is an active, interdisciplinary research area that is devoted to the development, analysis and implementation of coupling and decoupling strategies in mathematics, computational science, engineering and industry. A series of international conferences starting in 1987 set the stage for the presentation of many meanwhile classical results on substructuring, block iterative methods, parallel and distributed high performance computing etc. This volume contains a selection from the papers presented at the 15th International Domain Decomposition Conference held in Berlin, Germany, July 17-25, 2003 by the world's leading experts in the field. Its special focus has been on numerical analysis, computational issues,complex heterogeneous problems, industrial problems, and software development.