Author: Mehmet Ali Arslan
Publisher:
ISBN: 9780999200513
Category :
Languages : en
Pages :
Book Description
The first edition of Applied Statistics and DOE is truly an exceptional book, emphasizing coverage on the main subjects of statistics with hands-on application content including; collection/presentation of data, descriptive/inferential statistics in analyzing the data, input/output causal transfer function building with regression analysis, statistical process control(SPC) through control charts and process capability analysis. Further, the textbook gives an excellent insight about Design of Experiments(DOE) and introduces OFAT, factorial and Taguchi designs in comparative detail. The textbook is specially written for the use of all levels of students from different backgrounds and also designed to equip them with every day use of hands-on knowledge and experience in handling numerous statistical and DOE problems.
Applied Statistics and DOE
Author: Mehmet Ali Arslan
Publisher:
ISBN: 9780999200513
Category :
Languages : en
Pages :
Book Description
The first edition of Applied Statistics and DOE is truly an exceptional book, emphasizing coverage on the main subjects of statistics with hands-on application content including; collection/presentation of data, descriptive/inferential statistics in analyzing the data, input/output causal transfer function building with regression analysis, statistical process control(SPC) through control charts and process capability analysis. Further, the textbook gives an excellent insight about Design of Experiments(DOE) and introduces OFAT, factorial and Taguchi designs in comparative detail. The textbook is specially written for the use of all levels of students from different backgrounds and also designed to equip them with every day use of hands-on knowledge and experience in handling numerous statistical and DOE problems.
Publisher:
ISBN: 9780999200513
Category :
Languages : en
Pages :
Book Description
The first edition of Applied Statistics and DOE is truly an exceptional book, emphasizing coverage on the main subjects of statistics with hands-on application content including; collection/presentation of data, descriptive/inferential statistics in analyzing the data, input/output causal transfer function building with regression analysis, statistical process control(SPC) through control charts and process capability analysis. Further, the textbook gives an excellent insight about Design of Experiments(DOE) and introduces OFAT, factorial and Taguchi designs in comparative detail. The textbook is specially written for the use of all levels of students from different backgrounds and also designed to equip them with every day use of hands-on knowledge and experience in handling numerous statistical and DOE problems.
Statistical Analysis of Designed Experiments
Author: Ajit C. Tamhane
Publisher: John Wiley & Sons
ISBN: 1118491432
Category : Science
Languages : en
Pages : 724
Book Description
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.
Publisher: John Wiley & Sons
ISBN: 1118491432
Category : Science
Languages : en
Pages : 724
Book Description
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.
Introduction to Quality Engineering
Author: Mehmet Ali Arslan
Publisher:
ISBN: 9780999200568
Category :
Languages : en
Pages :
Book Description
Introduction to Quality Engineering is truly a comprehensible book, emphasizing coverage on the main subjects of quality including statistics, engineering, and management, all joined for the benefit of the company. This book is specially written for the use of all levels of students from a wide range of backgrounds and designed to equip them with hands-on knowledge and experience in understanding and implementing the quality.
Publisher:
ISBN: 9780999200568
Category :
Languages : en
Pages :
Book Description
Introduction to Quality Engineering is truly a comprehensible book, emphasizing coverage on the main subjects of quality including statistics, engineering, and management, all joined for the benefit of the company. This book is specially written for the use of all levels of students from a wide range of backgrounds and designed to equip them with hands-on knowledge and experience in understanding and implementing the quality.
APPLIED DESIGN OF EXPERIMENTS AND TAGUCHI METHODS
Author: K. KRISHNAIAH
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120345274
Category : Business & Economics
Languages : en
Pages : 371
Book Description
Design of experiments (DOE) is an off-line quality assurance technique used to achieve best performance of products and processes. This book covers the basic ideas, terminology, and the application of techniques necessary to conduct a study using DOE. The text is divided into two parts—Part I (Design of Experiments) and Part II (Taguchi Methods). Part I (Chapters 1–8) begins with a discussion on basics of statistics and fundamentals of experimental designs, and then, it moves on to describe randomized design, Latin square design, Graeco-Latin square design. In addition, it also deals with statistical model for a two-factor and three-factor experiments and analyses 2k factorial, 2k-m fractional factorial design and methodology of surface design. Part II (Chapters 9–16) discusses Taguchi quality loss function, orthogonal design, objective functions in robust design. Besides, the book explains the application of orthogonal arrays, data analysis using response graph method/analysis of variance, methods for multi-level factor designs, factor analysis and genetic algorithm. This book is intended as a text for the undergraduate students of Industrial Engineering and postgraduate students of Mechtronics Engineering, Mechanical Engineering, and Statistics. In addition, the book would also be extremely useful for both academicians and practitioners KEY FEATURES : Includes six case studies of DOE in the context of different industry sector. Provides essential DOE techniques for process improvement. Introduces simple graphical methods for reducing time taken to design and develop products.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120345274
Category : Business & Economics
Languages : en
Pages : 371
Book Description
Design of experiments (DOE) is an off-line quality assurance technique used to achieve best performance of products and processes. This book covers the basic ideas, terminology, and the application of techniques necessary to conduct a study using DOE. The text is divided into two parts—Part I (Design of Experiments) and Part II (Taguchi Methods). Part I (Chapters 1–8) begins with a discussion on basics of statistics and fundamentals of experimental designs, and then, it moves on to describe randomized design, Latin square design, Graeco-Latin square design. In addition, it also deals with statistical model for a two-factor and three-factor experiments and analyses 2k factorial, 2k-m fractional factorial design and methodology of surface design. Part II (Chapters 9–16) discusses Taguchi quality loss function, orthogonal design, objective functions in robust design. Besides, the book explains the application of orthogonal arrays, data analysis using response graph method/analysis of variance, methods for multi-level factor designs, factor analysis and genetic algorithm. This book is intended as a text for the undergraduate students of Industrial Engineering and postgraduate students of Mechtronics Engineering, Mechanical Engineering, and Statistics. In addition, the book would also be extremely useful for both academicians and practitioners KEY FEATURES : Includes six case studies of DOE in the context of different industry sector. Provides essential DOE techniques for process improvement. Introduces simple graphical methods for reducing time taken to design and develop products.
Design of Experiments for Engineers and Scientists
Author: Jiju Antony
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Publisher: Elsevier
ISBN: 0080994199
Category : Technology & Engineering
Languages : en
Pages : 221
Book Description
The tools and techniques used in Design of Experiments (DoE) have been proven successful in meeting the challenge of continuous improvement in many manufacturing organisations over the last two decades. However research has shown that application of this powerful technique in many companies is limited due to a lack of statistical knowledge required for its effective implementation.Although many books have been written on this subject, they are mainly by statisticians, for statisticians and not appropriate for engineers. Design of Experiments for Engineers and Scientists overcomes the problem of statistics by taking a unique approach using graphical tools. The same outcomes and conclusions are reached as through using statistical methods and readers will find the concepts in this book both familiar and easy to understand.This new edition includes a chapter on the role of DoE within Six Sigma methodology and also shows through the use of simple case studies its importance in the service industry. It is essential reading for engineers and scientists from all disciplines tackling all kinds of manufacturing, product and process quality problems and will be an ideal resource for students of this topic. - Written in non-statistical language, the book is an essential and accessible text for scientists and engineers who want to learn how to use DoE - Explains why teaching DoE techniques in the improvement phase of Six Sigma is an important part of problem solving methodology - New edition includes a full chapter on DoE for services as well as case studies illustrating its wider application in the service industry
Quality Control and Applied Statistics
Author:
Publisher:
ISBN:
Category : Operations research
Languages : en
Pages : 796
Book Description
Publisher:
ISBN:
Category : Operations research
Languages : en
Pages : 796
Book Description
Statistical Analysis of Designed Experiments
Author: Helge Toutenburg
Publisher: Springer Science & Business Media
ISBN: 0387227725
Category : Mathematics
Languages : en
Pages : 507
Book Description
Unique in commencing with relatively simple statistical concepts and ideas found in most introductory statistical textbooks, this book goes on to cover more material useful for undergraduates and graduate in statistics and biostatistics.
Publisher: Springer Science & Business Media
ISBN: 0387227725
Category : Mathematics
Languages : en
Pages : 507
Book Description
Unique in commencing with relatively simple statistical concepts and ideas found in most introductory statistical textbooks, this book goes on to cover more material useful for undergraduates and graduate in statistics and biostatistics.
Statistical Quality Control for the Six Sigma Green Belt
Author: Bhisham C. Gupta
Publisher: Quality Press
ISBN: 0873891627
Category : Business & Economics
Languages : en
Pages : 365
Book Description
This book is a desk reference and instructional aid for those individuals currently involved with, or preparing for involvement with, Six Sigma project teams. As Six Sigma team members, Green Belts help select, collect data for, and assist with the interpretation of a variety of statistical or quantitative tools within the context of the Six Sigma methodology. The second in a four-book series geared specifically for these Green Belt activities, this book provides a thorough discussion of statistical quality control (SQC) tools. These tools are introduced and discussed from the perspective of application rather than theoretical development. From this perspective, readers are taught to consider the SQC tools as statistical “alarm bells” that send signals when there are one or more problems with a particular process. Guidance is also given on the use of Minitab and JMP in doing these various SQC applications. In addition, examples and sample problems from all industries appear throughout the book to aid a Green Belt's comprehension of the material.
Publisher: Quality Press
ISBN: 0873891627
Category : Business & Economics
Languages : en
Pages : 365
Book Description
This book is a desk reference and instructional aid for those individuals currently involved with, or preparing for involvement with, Six Sigma project teams. As Six Sigma team members, Green Belts help select, collect data for, and assist with the interpretation of a variety of statistical or quantitative tools within the context of the Six Sigma methodology. The second in a four-book series geared specifically for these Green Belt activities, this book provides a thorough discussion of statistical quality control (SQC) tools. These tools are introduced and discussed from the perspective of application rather than theoretical development. From this perspective, readers are taught to consider the SQC tools as statistical “alarm bells” that send signals when there are one or more problems with a particular process. Guidance is also given on the use of Minitab and JMP in doing these various SQC applications. In addition, examples and sample problems from all industries appear throughout the book to aid a Green Belt's comprehension of the material.
The Design of Experiments
Author: Sir Ronald Aylmer Fisher
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 248
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 248
Book Description
Optimal Design of Experiments
Author: Peter Goos
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.
Publisher: John Wiley & Sons
ISBN: 1119976162
Category : Science
Languages : en
Pages : 249
Book Description
"This is an engaging and informative book on the modern practice of experimental design. The authors' writing style is entertaining, the consulting dialogs are extremely enjoyable, and the technical material is presented brilliantly but not overwhelmingly. The book is a joy to read. Everyone who practices or teaches DOE should read this book." - Douglas C. Montgomery, Regents Professor, Department of Industrial Engineering, Arizona State University "It's been said: 'Design for the experiment, don't experiment for the design.' This book ably demonstrates this notion by showing how tailor-made, optimal designs can be effectively employed to meet a client's actual needs. It should be required reading for anyone interested in using the design of experiments in industrial settings." —Christopher J. Nachtsheim, Frank A Donaldson Chair in Operations Management, Carlson School of Management, University of Minnesota This book demonstrates the utility of the computer-aided optimal design approach using real industrial examples. These examples address questions such as the following: How can I do screening inexpensively if I have dozens of factors to investigate? What can I do if I have day-to-day variability and I can only perform 3 runs a day? How can I do RSM cost effectively if I have categorical factors? How can I design and analyze experiments when there is a factor that can only be changed a few times over the study? How can I include both ingredients in a mixture and processing factors in the same study? How can I design an experiment if there are many factor combinations that are impossible to run? How can I make sure that a time trend due to warming up of equipment does not affect the conclusions from a study? How can I take into account batch information in when designing experiments involving multiple batches? How can I add runs to a botched experiment to resolve ambiguities? While answering these questions the book also shows how to evaluate and compare designs. This allows researchers to make sensible trade-offs between the cost of experimentation and the amount of information they obtain.