Applied Picard-Lefschetz Theory

Applied Picard-Lefschetz Theory PDF Author: V. A. Vasilʹev
Publisher: American Mathematical Soc.
ISBN: 0821829483
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Many important functions of mathematical physics are defined as integrals depending on parameters. The Picard-Lefschetz theory studies how analytic and qualitative properties of such integrals (regularity, algebraicity, ramification, singular points, etc.) depend on the monodromy of corresponding integration cycles. In this book, V. A. Vassiliev presents several versions of the Picard-Lefschetz theory, including the classical local monodromy theory of singularities and completeintersections, Pham's generalized Picard-Lefschetz formulas, stratified Picard-Lefschetz theory, and also twisted versions of all these theories with applications to integrals of multivalued forms. The author also shows how these versions of the Picard-Lefschetz theory are used in studying a variety ofproblems arising in many areas of mathematics and mathematical physics. In particular, he discusses the following classes of functions: volume functions arising in the Archimedes-Newton problem of integrable bodies; Newton-Coulomb potentials; fundamental solutions of hyperbolic partial differential equations; multidimensional hypergeometric functions generalizing the classical Gauss hypergeometric integral. The book is geared toward a broad audience of graduate students, research mathematiciansand mathematical physicists interested in algebraic geometry, complex analysis, singularity theory, asymptotic methods, potential theory, and hyperbolic operators.

Applied Picard-Lefschetz Theory

Applied Picard-Lefschetz Theory PDF Author: V. A. Vasilʹev
Publisher: American Mathematical Soc.
ISBN: 0821829483
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Many important functions of mathematical physics are defined as integrals depending on parameters. The Picard-Lefschetz theory studies how analytic and qualitative properties of such integrals (regularity, algebraicity, ramification, singular points, etc.) depend on the monodromy of corresponding integration cycles. In this book, V. A. Vassiliev presents several versions of the Picard-Lefschetz theory, including the classical local monodromy theory of singularities and completeintersections, Pham's generalized Picard-Lefschetz formulas, stratified Picard-Lefschetz theory, and also twisted versions of all these theories with applications to integrals of multivalued forms. The author also shows how these versions of the Picard-Lefschetz theory are used in studying a variety ofproblems arising in many areas of mathematics and mathematical physics. In particular, he discusses the following classes of functions: volume functions arising in the Archimedes-Newton problem of integrable bodies; Newton-Coulomb potentials; fundamental solutions of hyperbolic partial differential equations; multidimensional hypergeometric functions generalizing the classical Gauss hypergeometric integral. The book is geared toward a broad audience of graduate students, research mathematiciansand mathematical physicists interested in algebraic geometry, complex analysis, singularity theory, asymptotic methods, potential theory, and hyperbolic operators.

Fukaya Categories and Picard-Lefschetz Theory

Fukaya Categories and Picard-Lefschetz Theory PDF Author: Paul Seidel
Publisher: European Mathematical Society
ISBN: 9783037190630
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
The central objects in the book are Lagrangian submanifolds and their invariants, such as Floer homology and its multiplicative structures, which together constitute the Fukaya category. The relevant aspects of pseudo-holomorphic curve theory are covered in some detail, and there is also a self-contained account of the necessary homological algebra. Generally, the emphasis is on simplicity rather than generality. The last part discusses applications to Lefschetz fibrations and contains many previously unpublished results. The book will be of interest to graduate students and researchers in symplectic geometry and mirror symmetry.

Applied Picard-Lefschetz Theory

Applied Picard-Lefschetz Theory PDF Author: Timothy G Feeman
Publisher: American Mathematical Society(RI)
ISBN: 9781470413248
Category : MATHEMATICS
Languages : en
Pages : 338

Get Book Here

Book Description
Many important functions of mathematical physics are defined as integrals depending on parameters. The Picard-Lefschetz theory studies how analytic and qualitative properties of such integrals (regularity, algebraicity, ramification, singular points, etc.) depend on the monodromy of corresponding integration cycles. In this book, V. A. Vassiliev presents several versions of the Picard-Lefschetz theory, including the classical local monodromy theory of singularities and complete intersections, Pham's generalized Picard-Lefschetz formulas, stratified Picard-Lefschetz theory, and also twisted versions of all these theories with applications to integrals of multivalued forms.

Applications of Algebraic Topology

Applications of Algebraic Topology PDF Author: S. Lefschetz
Publisher: Springer Science & Business Media
ISBN: 1468493671
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.

Harmonic Analysis on Commutative Spaces

Harmonic Analysis on Commutative Spaces PDF Author: Joseph Albert Wolf
Publisher: American Mathematical Soc.
ISBN: 0821842897
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
This study starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces.

Moment Maps, Cobordisms, and Hamiltonian Group Actions

Moment Maps, Cobordisms, and Hamiltonian Group Actions PDF Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 0821805029
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.

Traces of Hecke Operators

Traces of Hecke Operators PDF Author: Andrew Knightly
Publisher: American Mathematical Soc.
ISBN: 0821837397
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
The Fourier coefficients of modular forms are of widespread interest as an important source of arithmetic information. In many cases, these coefficients can be recovered from explicit knowledge of the traces of Hecke operators. The original trace formula for Hecke operators was given by Selberg in 1956. Many improvements were made in subsequent years, notably by Eichler and Hijikata. This book provides a comprehensive modern treatment of the Eichler-Selberg/Hijikata trace formulafor the traces of Hecke operators on spaces of holomorphic cusp forms of weight $\mathtt{k >2$ for congruence subgroups of $\operatorname{SL 2(\mathbf{Z )$. The first half of the text brings together the background from number theory and representation theory required for the computation. Thisincludes detailed discussions of modular forms, Hecke operators, adeles and ideles, structure theory for $\operatorname{GL 2(\mathbf{A )$, strong approximation, integration on locally compact groups, the Poisson summation formula, adelic zeta functions, basic representation theory for locally compact groups, the unitary representations of $\operatorname{GL 2(\mathbf{R )$, and the connection between classical cusp forms and their adelic counterparts on $\operatorname{GL 2(\mathbf{A )$. Thesecond half begins with a full development of the geometric side of the Arthur-Selberg trace formula for the group $\operatorname{GL 2(\mathbf{A )$. This leads to an expression for the trace of a Hecke operator, which is then computed explicitly. The exposition is virtually self-contained, withcomplete references for the occasional use of auxiliary results. The book concludes with several applications of the final formula.

Algebraic Geometric Codes: Basic Notions

Algebraic Geometric Codes: Basic Notions PDF Author: Michael Tsfasman
Publisher: American Mathematical Society
ISBN: 1470470071
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
The book is devoted to the theory of algebraic geometric codes, a subject formed on the border of several domains of mathematics. On one side there are such classical areas as algebraic geometry and number theory; on the other, information transmission theory, combinatorics, finite geometries, dense packings, etc. The authors give a unique perspective on the subject. Whereas most books on coding theory build up coding theory from within, starting from elementary concepts and almost always finishing without reaching a certain depth, this book constantly looks for interpretations that connect coding theory to algebraic geometry and number theory. There are no prerequisites other than a standard algebra graduate course. The first two chapters of the book can serve as an introduction to coding theory and algebraic geometry respectively. Special attention is given to the geometry of curves over finite fields in the third chapter. Finally, in the last chapter the authors explain relations between all of these: the theory of algebraic geometric codes.

Large Deviations for Stochastic Processes

Large Deviations for Stochastic Processes PDF Author: Jin Feng
Publisher: American Mathematical Soc.
ISBN: 1470418703
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.

Representations of Algebraic Groups

Representations of Algebraic Groups PDF Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 9780821835272
Category : Mathematics
Languages : en
Pages : 652

Get Book Here

Book Description
Now back in print by the AMS, this is a significantly revised edition of a book originally published in 1987 by Academic Press. This book gives the reader an introduction to the theory of algebraic representations of reductive algebraic groups. To develop appropriate techniques, the first part of the book is an introduction to the general theory of representations of algebraic group schemes. Here, the author describes important basic notions: induction functors, cohomology,quotients, Frobenius kernels, and reduction mod $p$, among others. The second part of the book is devoted to the representation theory of reductive algebraic groups. It includes topics such as the description of simple modules, vanishing theorems, the Borel-Bott-Weil theorem and Weyl's character formula, andSchubert schemes and line bundles on them. For this revised edition the author added nearly 150 pages of new material describing some later developments, among them Schur algebras, Lusztig's conjecture and Kazhdan-Lusztig polynomials, tilting modules, and representations of quantum groups. He also made major revisions to parts of the old text. Jantzen's book continues to be the ultimate source of information on representations of algebraic groups in finite characteristics. It is suitable forgraduate students and research mathematicians interested in algebraic groups and their representations.