Author: Richard Haberman
Publisher:
ISBN: 9780132638074
Category : Boundary value problems
Languages : en
Pages : 0
Book Description
This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.
Elementary Applied Partial Differential Equations
Author: Richard Haberman
Publisher:
ISBN: 9780132638074
Category : Boundary value problems
Languages : en
Pages : 0
Book Description
This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.
Publisher:
ISBN: 9780132638074
Category : Boundary value problems
Languages : en
Pages : 0
Book Description
This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.
Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)
Author: Richard Haberman
Publisher: Pearson
ISBN: 9780134995434
Category : Boundary value problems
Languages : en
Pages : 784
Book Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Publisher: Pearson
ISBN: 9780134995434
Category : Boundary value problems
Languages : en
Pages : 784
Book Description
This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Partial Differential Equations in Action
Author: Sandro Salsa
Publisher: Springer
ISBN: 3319150936
Category : Mathematics
Languages : en
Pages : 714
Book Description
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Publisher: Springer
ISBN: 3319150936
Category : Mathematics
Languages : en
Pages : 714
Book Description
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Partial Differential Equations with Fourier Series and Boundary Value Problems
Author: Nakhle H. Asmar
Publisher: Courier Dover Publications
ISBN: 0486820831
Category : Mathematics
Languages : en
Pages : 818
Book Description
Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.
Publisher: Courier Dover Publications
ISBN: 0486820831
Category : Mathematics
Languages : en
Pages : 818
Book Description
Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.
Linear Partial Differential Equations and Fourier Theory
Author: Marcus Pivato
Publisher: Cambridge University Press
ISBN: 0521199700
Category : Mathematics
Languages : en
Pages : 631
Book Description
This highly visual introductory textbook provides a rigorous mathematical foundation for all solution methods and reinforces ties to physical motivation.
Publisher: Cambridge University Press
ISBN: 0521199700
Category : Mathematics
Languages : en
Pages : 631
Book Description
This highly visual introductory textbook provides a rigorous mathematical foundation for all solution methods and reinforces ties to physical motivation.
Partial Differential Equations: Classical Theory with a Modern Touch
Author: A. K. Nandakumaran
Publisher: Cambridge University Press
ISBN: 1108839800
Category : Mathematics
Languages : en
Pages : 377
Book Description
A valuable guide covering the key principles of partial differential equations and their real world applications.
Publisher: Cambridge University Press
ISBN: 1108839800
Category : Mathematics
Languages : en
Pages : 377
Book Description
A valuable guide covering the key principles of partial differential equations and their real world applications.
Vector Calculus
Author: Jerrold E. Marsden
Publisher: Macmillan
ISBN: 9780716749929
Category : Mathematics
Languages : en
Pages : 712
Book Description
'Vector Calculus' helps students foster computational skills and intuitive understanding with a careful balance of theory, applications, and optional materials. This new edition offers revised coverage in several areas as well as a large number of new exercises and expansion of historical notes.
Publisher: Macmillan
ISBN: 9780716749929
Category : Mathematics
Languages : en
Pages : 712
Book Description
'Vector Calculus' helps students foster computational skills and intuitive understanding with a careful balance of theory, applications, and optional materials. This new edition offers revised coverage in several areas as well as a large number of new exercises and expansion of historical notes.
Introduction to Partial Differential Equations
Author: K. Sankara Rao
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120342224
Category : Mathematics
Languages : en
Pages : 500
Book Description
Provides students with the fundamental concepts, the underlying principles, and various well-known mathematical techniques and methods, such as Laplace and Fourier transform techniques, the variable separable method, and Green's function method, to solve partial differential equations. It is supported by miscellaneous examples to enable students to assimilate the fundamental concepts and the techniques for solving PDEs with various initial and boundary conditions.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120342224
Category : Mathematics
Languages : en
Pages : 500
Book Description
Provides students with the fundamental concepts, the underlying principles, and various well-known mathematical techniques and methods, such as Laplace and Fourier transform techniques, the variable separable method, and Green's function method, to solve partial differential equations. It is supported by miscellaneous examples to enable students to assimilate the fundamental concepts and the techniques for solving PDEs with various initial and boundary conditions.
Spectral Methods
Author: Jie Shen
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Partial Differential Equations and Boundary Value Problems
Author: Nakhlé H. Asmar
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 616
Book Description
For introductory courses in PDEs taken by majors in engineering, physics, and mathematics. Packed with examples, this text provides a smooth transition from a course in elementary ordinary differential equations to more advanced concepts in a first course in partial differential equations. Asmar's relaxed style and emphasis on applications make the material understandable even for students with limited exposure to topics beyond calculus. This computer-friendly text encourages the use of computer resources for illustrating results and applications, but it is also suitable for use without computer access. Additional specialized topics are included that are covered independently of each other and can be covered by instructors as desired.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 616
Book Description
For introductory courses in PDEs taken by majors in engineering, physics, and mathematics. Packed with examples, this text provides a smooth transition from a course in elementary ordinary differential equations to more advanced concepts in a first course in partial differential equations. Asmar's relaxed style and emphasis on applications make the material understandable even for students with limited exposure to topics beyond calculus. This computer-friendly text encourages the use of computer resources for illustrating results and applications, but it is also suitable for use without computer access. Additional specialized topics are included that are covered independently of each other and can be covered by instructors as desired.