Applied Bioinformatics

Applied Bioinformatics PDF Author: Paul Maria Selzer
Publisher: Springer Science & Business Media
ISBN: 3540728007
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
At last, here is a baseline book for anyone who is confused by cryptic computer programs, algorithms and formulae, but wants to learn about applied bioinformatics. Now, anyone who can operate a PC, standard software and the internet can also learn to understand the biological basis of bioinformatics, of the existence as well as the source and availability of bioinformatics software, and how to apply these tools and interpret results with confidence. This process is aided by chapters that introduce important aspects of bioinformatics, detailed bioinformatics exercises (including solutions), and to cap it all, a glossary of definitions and terminology relating to bioinformatics.

Applied Bioinformatics

Applied Bioinformatics PDF Author: Paul Maria Selzer
Publisher: Springer Science & Business Media
ISBN: 3540728007
Category : Science
Languages : en
Pages : 297

Get Book Here

Book Description
At last, here is a baseline book for anyone who is confused by cryptic computer programs, algorithms and formulae, but wants to learn about applied bioinformatics. Now, anyone who can operate a PC, standard software and the internet can also learn to understand the biological basis of bioinformatics, of the existence as well as the source and availability of bioinformatics software, and how to apply these tools and interpret results with confidence. This process is aided by chapters that introduce important aspects of bioinformatics, detailed bioinformatics exercises (including solutions), and to cap it all, a glossary of definitions and terminology relating to bioinformatics.

Applied Bioinformatics

Applied Bioinformatics PDF Author: David Hendrix
Publisher:
ISBN: 9781955101165
Category :
Languages : en
Pages :

Get Book Here

Book Description


Basic Applied Bioinformatics

Basic Applied Bioinformatics PDF Author: Chandra Sekhar Mukhopadhyay
Publisher: John Wiley & Sons
ISBN: 1119244412
Category : Medical
Languages : en
Pages : 554

Get Book Here

Book Description
An accessible guide that introduces students in all areas of life sciences to bioinformatics Basic Applied Bioinformatics provides a practical guidance in bioinformatics and helps students to optimize parameters for data analysis and then to draw accurate conclusions from the results. In addition to parameter optimization, the text will also familiarize students with relevant terminology. Basic Applied Bioinformatics is written as an accessible guide for graduate students studying bioinformatics, biotechnology, and other related sub-disciplines of the life sciences. This accessible text outlines the basics of bioinformatics, including pertinent information such as downloading molecular sequences (nucleotide and protein) from databases; BLAST analyses; primer designing and its quality checking, multiple sequence alignment (global and local using freely available software); phylogenetic tree construction (using UPGMA, NJ, MP, ME, FM algorithm and MEGA7 suite), prediction of protein structures and genome annotation, RNASeq data analyses and identification of differentially expressed genes and similar advanced bioinformatics analyses. The authors Chandra Sekhar Mukhopadhyay, Ratan Kumar Choudhary, and Mir Asif Iquebal are noted experts in the field and have come together to provide an updated information on bioinformatics. Salient features of this book includes: Accessible and updated information on bioinformatics tools A practical step-by-step approach to molecular-data analyses Information pertinent to study a variety of disciplines including biotechnology, zoology, bioinformatics and other related fields Worked examples, glossary terms, problems and solutions Basic Applied Bioinformatics gives students studying bioinformatics, agricultural biotechnology, animal biotechnology, medical biotechnology, microbial biotechnology, and zoology an updated introduction to the growing field of bioinformatics.

Unsupervised Feature Extraction Applied to Bioinformatics

Unsupervised Feature Extraction Applied to Bioinformatics PDF Author: Y-h. Taguchi
Publisher: Springer Nature
ISBN: 3030224562
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. Allows readers to analyze data sets with small samples and many features; Provides a fast algorithm, based upon linear algebra, to analyze big data; Includes several applications to multi-view data analyses, with a focus on bioinformatics.

High-Dimensional Data Analysis in Cancer Research

High-Dimensional Data Analysis in Cancer Research PDF Author: Xiaochun Li
Publisher: Springer Science & Business Media
ISBN: 0387697659
Category : Medical
Languages : en
Pages : 164

Get Book Here

Book Description
Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.

Modern Clinical Trial Analysis

Modern Clinical Trial Analysis PDF Author: Wan Tang
Publisher: Springer Science & Business Media
ISBN: 1461443229
Category : Medical
Languages : en
Pages : 256

Get Book Here

Book Description
This volume covers classic as well as cutting-edge topics on the analysis of clinical trial data in biomedical and psychosocial research and discusses each topic in an expository and user-friendly fashion. The intent of the book is to provide an overview of the primary statistical and data analytic issues associated with each of the selected topics, followed by a discussion of approaches for tackling such issues and available software packages for carrying out analyses. While classic topics such as survival data analysis, analysis of diagnostic test data and assessment of measurement reliability are well known and covered in depth by available topic-specific texts, this volume serves a different purpose: it provides a quick introduction to each topic for self-learning, particularly for those who have not done any formal coursework on a given topic but must learn it due to its relevance to their multidisciplinary research. In addition, the chapters on these classic topics will reflect issues particularly relevant to modern clinical trials such as longitudinal designs and new methods for analyzing data from such study designs. The coverage of these topics provides a quick introduction to these important statistical issues and methods for addressing them. As with the classic topics, this part of the volume on modern topics will enable researchers to grasp the statistical methods for addressing these emerging issues underlying modern clinical trials and to apply them to their research studies.

Statistical Methods in Bioinformatics

Statistical Methods in Bioinformatics PDF Author: Warren J. Ewens
Publisher: Springer Science & Business Media
ISBN: 0387400826
Category : Science
Languages : en
Pages : 616

Get Book Here

Book Description
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)

Advanced Data Mining Technologies in Bioinformatics

Advanced Data Mining Technologies in Bioinformatics PDF Author: Hui-Huang Hsu
Publisher: IGI Global
ISBN: 1591408636
Category : Computers
Languages : en
Pages : 343

Get Book Here

Book Description
"This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field"--Provided by publisher.

Bioinformatics Algorithms

Bioinformatics Algorithms PDF Author: Ion Mandoiu
Publisher: John Wiley & Sons
ISBN: 0470097736
Category : Computers
Languages : en
Pages : 528

Get Book Here

Book Description
Presents algorithmic techniques for solving problems in bioinformatics, including applications that shed new light on molecular biology This book introduces algorithmic techniques in bioinformatics, emphasizing their application to solving novel problems in post-genomic molecular biology. Beginning with a thought-provoking discussion on the role of algorithms in twenty-first-century bioinformatics education, Bioinformatics Algorithms covers: General algorithmic techniques, including dynamic programming, graph-theoretical methods, hidden Markov models, the fast Fourier transform, seeding, and approximation algorithms Algorithms and tools for genome and sequence analysis, including formal and approximate models for gene clusters, advanced algorithms for non-overlapping local alignments and genome tilings, multiplex PCR primer set selection, and sequence/network motif finding Microarray design and analysis, including algorithms for microarray physical design, missing value imputation, and meta-analysis of gene expression data Algorithmic issues arising in the analysis of genetic variation across human population, including computational inference of haplotypes from genotype data and disease association search in case/control epidemiologic studies Algorithmic approaches in structural and systems biology, including topological and structural classification in biochemistry, and prediction of protein-protein and domain-domain interactions Each chapter begins with a self-contained introduction to a computational problem; continues with a brief review of the existing literature on the subject and an in-depth description of recent algorithmic and methodological developments; and concludes with a brief experimental study and a discussion of open research challenges. This clear and approachable presentation makes the book appropriate for researchers, practitioners, and graduate students alike.

Computational Cell Biology

Computational Cell Biology PDF Author: Christopher P. Fall
Publisher: Springer Science & Business Media
ISBN: 0387224599
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.