Applications of the Topological Derivative Method

Applications of the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer
ISBN: 3030054322
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.

Applications of the Topological Derivative Method

Applications of the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer
ISBN: 3030054322
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.

An Introduction to the Topological Derivative Method

An Introduction to the Topological Derivative Method PDF Author: Antonio André Novotny
Publisher: Springer Nature
ISBN: 3030369153
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.

Topological Methods For Set-valued Nonlinear Analysis

Topological Methods For Set-valued Nonlinear Analysis PDF Author: Enayet U Tarafdar
Publisher: World Scientific
ISBN: 9814476218
Category : Mathematics
Languages : en
Pages : 627

Get Book Here

Book Description
This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical economics, the Pareto optimum in optimization, and applications to best approximation theory, partial equations and boundary value problems.Self-contained and unified in presentation, the book considers the existence of equilibrium points of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities. It also provides the latest developments in KKM theory and degree theory for nonlinear set-valued mappings.

Applications Of Fractional Calculus In Physics

Applications Of Fractional Calculus In Physics PDF Author: Rudolf Hilfer
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors PDF Author: B. Andrei Bernevig
Publisher: Princeton University Press
ISBN: 1400846730
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization

EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization PDF Author: H.C. Rodrigues
Publisher: Springer
ISBN: 3319977733
Category : Technology & Engineering
Languages : en
Pages : 1486

Get Book Here

Book Description
The papers in this volume focus on the following topics: design optimization and inverse problems, numerical optimization techniques,efficient analysis and reanalysis techniques, sensitivity analysis and industrial applications. The conference EngOpt brings together engineers, applied mathematicians and computer scientists working on research, development and practical application of optimization methods in all engineering disciplines and applied sciences.

Introduction to Shape Optimization

Introduction to Shape Optimization PDF Author: Jan Sokolowski
Publisher: Springer Science & Business Media
ISBN: 3642581064
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.

Computational Topology for Data Analysis

Computational Topology for Data Analysis PDF Author: Tamal Krishna Dey
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Topology Optimization in Engineering Structure Design

Topology Optimization in Engineering Structure Design PDF Author: Jihong Zhu
Publisher: Elsevier
ISBN: 0081021194
Category : Business & Economics
Languages : en
Pages : 296

Get Book Here

Book Description
Topology Optimization in Engineering Structure Design explores the recent advances and applications of topology optimization in engineering structures design, with a particular focus on aircraft and aerospace structural systems.To meet the increasingly complex engineering challenges provided by rapid developments in these industries, structural optimization techniques have developed in conjunction with them over the past two decades. The latest methods and theories to improve mechanical performances and save structural weight under static, dynamic and thermal loads are summarized and explained in detail here, in addition to potential applications of topology optimization techniques such as shape preserving design, smart structure design and additive manufacturing.These new design strategies are illustrated by a host of worked examples, which are inspired by real engineering situations, some of which have been applied to practical structure design with significant effects. Written from a forward-looking applied engineering perspective, the authors not only summarize the latest developments in this field of structure design but also provide both theoretical knowledge and a practical guideline. This book should appeal to graduate students, researchers and engineers, in detailing how to use topology optimization methods to improve product design. - Combines practical applications and topology optimization methodologies - Provides problems inspired by real engineering difficulties - Designed to help researchers in universities acquire more engineering requirements

Advances in Mechanical Engineering

Advances in Mechanical Engineering PDF Author: B. B. Biswal
Publisher: Springer Nature
ISBN: 9811501246
Category : Technology & Engineering
Languages : en
Pages : 1624

Get Book Here

Book Description
This book comprises select proceedings of the International Conference on Recent Innovations and Developments in Mechanical Engineering (IC-RIDME 2018). The book contains peer reviewed articles covering thematic areas such as fluid mechanics, renewable energy, materials and manufacturing, thermal engineering, vibration and acoustics, experimental aerodynamics, turbo machinery, and robotics and mechatronics. Algorithms and methodologies of real-time problems are described in this book. The contents of this book will be useful for both academics and industry professionals.