Author: Dongqing Li
Publisher: Elsevier
ISBN: 0080530745
Category : Science
Languages : en
Pages : 653
Book Description
A lab-on-a-chip device is a microscale laboratory on a credit-card sized glass or plastic chip with a network of microchannels, electrodes, sensors and electronic circuits. These labs on a chip can duplicate the specialized functions as performed by their room-sized counterparts, such as clinical diagnoses, PCR and electrophoretic separation. The advantages of these labs on a chip include significant reduction in the amounts of samples and reagents, very short reaction and analysis time, high throughput and portability. Generally, a lab-on-a-chip device must perform a number of microfluidic functions: pumping, mixing, thermal cycling/incubating, dispensing, and separating. Precise manipulation of these microfluidic processes is key to the operation and performance of labs on a chip. The objective of this book is to provide a fundamental understanding of the interfacial electrokinetic phenomena in several key microfluidic processes, and to show how these phenomena can be utilised to control the microfluidic processes. For this purpose, this book emphasises the theoretical modelling and the numerical simulation of these electrokinetic phenomena in microfluidics. However, experimental studies of the electrokinetic microfluidic processes are also highlighted in sufficient detail. - The first book which systematically reviews electrokinetic microfluidics processes for lab-on-a chip applications - Covers modelling and numerical simulation of the electrokinetic microfluidics processes - Providing information on experimental studies and details of experimental techniques, which are essential for those who are new to this field
Electrokinetics in Microfluidics
Author: Dongqing Li
Publisher: Elsevier
ISBN: 0080530745
Category : Science
Languages : en
Pages : 653
Book Description
A lab-on-a-chip device is a microscale laboratory on a credit-card sized glass or plastic chip with a network of microchannels, electrodes, sensors and electronic circuits. These labs on a chip can duplicate the specialized functions as performed by their room-sized counterparts, such as clinical diagnoses, PCR and electrophoretic separation. The advantages of these labs on a chip include significant reduction in the amounts of samples and reagents, very short reaction and analysis time, high throughput and portability. Generally, a lab-on-a-chip device must perform a number of microfluidic functions: pumping, mixing, thermal cycling/incubating, dispensing, and separating. Precise manipulation of these microfluidic processes is key to the operation and performance of labs on a chip. The objective of this book is to provide a fundamental understanding of the interfacial electrokinetic phenomena in several key microfluidic processes, and to show how these phenomena can be utilised to control the microfluidic processes. For this purpose, this book emphasises the theoretical modelling and the numerical simulation of these electrokinetic phenomena in microfluidics. However, experimental studies of the electrokinetic microfluidic processes are also highlighted in sufficient detail. - The first book which systematically reviews electrokinetic microfluidics processes for lab-on-a chip applications - Covers modelling and numerical simulation of the electrokinetic microfluidics processes - Providing information on experimental studies and details of experimental techniques, which are essential for those who are new to this field
Publisher: Elsevier
ISBN: 0080530745
Category : Science
Languages : en
Pages : 653
Book Description
A lab-on-a-chip device is a microscale laboratory on a credit-card sized glass or plastic chip with a network of microchannels, electrodes, sensors and electronic circuits. These labs on a chip can duplicate the specialized functions as performed by their room-sized counterparts, such as clinical diagnoses, PCR and electrophoretic separation. The advantages of these labs on a chip include significant reduction in the amounts of samples and reagents, very short reaction and analysis time, high throughput and portability. Generally, a lab-on-a-chip device must perform a number of microfluidic functions: pumping, mixing, thermal cycling/incubating, dispensing, and separating. Precise manipulation of these microfluidic processes is key to the operation and performance of labs on a chip. The objective of this book is to provide a fundamental understanding of the interfacial electrokinetic phenomena in several key microfluidic processes, and to show how these phenomena can be utilised to control the microfluidic processes. For this purpose, this book emphasises the theoretical modelling and the numerical simulation of these electrokinetic phenomena in microfluidics. However, experimental studies of the electrokinetic microfluidic processes are also highlighted in sufficient detail. - The first book which systematically reviews electrokinetic microfluidics processes for lab-on-a chip applications - Covers modelling and numerical simulation of the electrokinetic microfluidics processes - Providing information on experimental studies and details of experimental techniques, which are essential for those who are new to this field
Design Automation Methods and Tools for Microfluidics-Based Biochips
Author: Jun Zeng
Publisher: Springer Science & Business Media
ISBN: 1402051239
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Design Automation Methods and Tools for Microfluidics-Based Biochips deals with all aspects of design automation for microfluidics-based biochips. Experts have contributed chapters on many aspects of biochip design automation. Topics covered include: device modeling; adaptation of bioassays for on-chip implementations; numerical methods and simulation tools; architectural synthesis, scheduling and binding of assay operations; physical design and module placement; fault modeling and testing; and reconfiguration methods.
Publisher: Springer Science & Business Media
ISBN: 1402051239
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Design Automation Methods and Tools for Microfluidics-Based Biochips deals with all aspects of design automation for microfluidics-based biochips. Experts have contributed chapters on many aspects of biochip design automation. Topics covered include: device modeling; adaptation of bioassays for on-chip implementations; numerical methods and simulation tools; architectural synthesis, scheduling and binding of assay operations; physical design and module placement; fault modeling and testing; and reconfiguration methods.
Electrokinetic Microfluidics and Nanofluidics
Author: Dongqing Li
Publisher: Springer Nature
ISBN: 3031161319
Category : Science
Languages : en
Pages : 288
Book Description
This book reviews the latest advancement of microfluidics and nanofluidics with a focus on electrokinetic phenomena in microfluidics and nanofluidics. It provides fundamental understanding of several new interfacial electrokinetic phenomena in microfluidics and nanofluidics. Chapter 1 gives a brief review of the fundamentals of interfacial electrokinetics. Chapter 2 shows induced charge electrokinetic transport phenomena. Chapter 3 presents the new advancement in DC dielectrophoresis. Chapter 4 introduces a novel nanofabrication method and the systematic studies of electrokinetic nanofluidics. Chapter 5 presents electrokinetic phenomena associated with Janus particles and Janus droplets. Chapter 6 introduces a new direction of electrokinetic nanofluidics: nanofluidic iontronics. Chapter 7 discusses an important differential resistive pulse sensor in microfluidics and nanofluidics.
Publisher: Springer Nature
ISBN: 3031161319
Category : Science
Languages : en
Pages : 288
Book Description
This book reviews the latest advancement of microfluidics and nanofluidics with a focus on electrokinetic phenomena in microfluidics and nanofluidics. It provides fundamental understanding of several new interfacial electrokinetic phenomena in microfluidics and nanofluidics. Chapter 1 gives a brief review of the fundamentals of interfacial electrokinetics. Chapter 2 shows induced charge electrokinetic transport phenomena. Chapter 3 presents the new advancement in DC dielectrophoresis. Chapter 4 introduces a novel nanofabrication method and the systematic studies of electrokinetic nanofluidics. Chapter 5 presents electrokinetic phenomena associated with Janus particles and Janus droplets. Chapter 6 introduces a new direction of electrokinetic nanofluidics: nanofluidic iontronics. Chapter 7 discusses an important differential resistive pulse sensor in microfluidics and nanofluidics.
Nanofluidics and Microfluidics
Author: Shaurya Prakash
Publisher: William Andrew
ISBN: 1437744702
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
To provide an interdisciplinary readership with the necessary toolkit to work with micro- and nanofluidics, this book provides basic theory, fundamentals of microfabrication, advanced fabrication methods, device characterization methods and detailed examples of applications of nanofluidics devices and systems. Case studies describing fabrication of complex micro- and nanoscale systems help the reader gain a practical understanding of developing and fabricating such systems. The resulting work covers the fundamentals, processes and applied challenges of functional engineered nanofluidic systems for a variety of different applications, including discussions of lab-on-chip, bio-related applications and emerging technologies for energy and environmental engineering. - The fundamentals of micro- and nanofluidic systems and micro- and nanofabrication techniques provide readers from a variety of academic backgrounds with the understanding required to develop new systems and applications. - Case studies introduce and illustrate state-of-the-art applications across areas, including lab-on-chip, energy and bio-based applications. - Prakash and Yeom provide readers with an essential toolkit to take micro- and nanofluidic applications out of the research lab and into commercial and laboratory applications.
Publisher: William Andrew
ISBN: 1437744702
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
To provide an interdisciplinary readership with the necessary toolkit to work with micro- and nanofluidics, this book provides basic theory, fundamentals of microfabrication, advanced fabrication methods, device characterization methods and detailed examples of applications of nanofluidics devices and systems. Case studies describing fabrication of complex micro- and nanoscale systems help the reader gain a practical understanding of developing and fabricating such systems. The resulting work covers the fundamentals, processes and applied challenges of functional engineered nanofluidic systems for a variety of different applications, including discussions of lab-on-chip, bio-related applications and emerging technologies for energy and environmental engineering. - The fundamentals of micro- and nanofluidic systems and micro- and nanofabrication techniques provide readers from a variety of academic backgrounds with the understanding required to develop new systems and applications. - Case studies introduce and illustrate state-of-the-art applications across areas, including lab-on-chip, energy and bio-based applications. - Prakash and Yeom provide readers with an essential toolkit to take micro- and nanofluidic applications out of the research lab and into commercial and laboratory applications.
Springer Handbook of Experimental Fluid Mechanics
Author: Cameron Tropea
Publisher: Springer Science & Business Media
ISBN: 3540251413
Category : Science
Languages : en
Pages : 1570
Book Description
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.
Publisher: Springer Science & Business Media
ISBN: 3540251413
Category : Science
Languages : en
Pages : 1570
Book Description
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.
Electrokinetic and Colloid Transport Phenomena
Author: Jacob H. Masliyah
Publisher: John Wiley & Sons
ISBN: 0471799734
Category : Science
Languages : en
Pages : 733
Book Description
A new, definitive perspective of electrokinetic and colloid transport processes Responding to renewed interest in the subject of electrokinetics, Electrokinetic and Colloid Transport Phenomena is a timely overview of the latest research and applications in this field for both the beginner and the professional. An outgrowth of an earlier text (by coauthor Jacob Masliyah), this self-contained reference provides an up-to-date summary of the literature on electrokinetic and colloid transport phenomena as well as direct pedagogical insight into the development of the subject over the past several decades. A distinct departure from standard colloid science monographs, Electrokinetic and Colloid Transport Phenomena presents the most salient features of the theory in a simple and direct manner, allowing the book to serve as a stepping-stone for further learning and study. In addition, the book uniquely discusses numerical simulation of electrokinetic problems and demonstrates the use of commercial finite element software for solving these multiphysics problems. Among the topics covered are: * Mathematical preliminaries * Colloidal systems * Electrostatics and application of electrostatics * Electric double layer * Electroosmosis and streaming potential * Electrophoresis and sedimentation potential * London-Van der Waals forces and the DLVO theory * Coagulation and colloid deposition * Numerical simulation of electrokinetic phenomena * Applications of electrokinetic phenomena Because this thorough reference does not require advanced mathematical knowledge, it enables a graduate or a senior undergraduate student approaching the subject for the first time to easily interpret the theories. On the other hand, the application of relevant mathematical principles and the worked examples are extremely useful to established researchers and professionals involved in a wide range of areas, including electroosmosis, streaming potential, electrophoretic separations, industrial practices involving colloids and complex fluids, environmental remediation, suspensions, and microfluidic systems.
Publisher: John Wiley & Sons
ISBN: 0471799734
Category : Science
Languages : en
Pages : 733
Book Description
A new, definitive perspective of electrokinetic and colloid transport processes Responding to renewed interest in the subject of electrokinetics, Electrokinetic and Colloid Transport Phenomena is a timely overview of the latest research and applications in this field for both the beginner and the professional. An outgrowth of an earlier text (by coauthor Jacob Masliyah), this self-contained reference provides an up-to-date summary of the literature on electrokinetic and colloid transport phenomena as well as direct pedagogical insight into the development of the subject over the past several decades. A distinct departure from standard colloid science monographs, Electrokinetic and Colloid Transport Phenomena presents the most salient features of the theory in a simple and direct manner, allowing the book to serve as a stepping-stone for further learning and study. In addition, the book uniquely discusses numerical simulation of electrokinetic problems and demonstrates the use of commercial finite element software for solving these multiphysics problems. Among the topics covered are: * Mathematical preliminaries * Colloidal systems * Electrostatics and application of electrostatics * Electric double layer * Electroosmosis and streaming potential * Electrophoresis and sedimentation potential * London-Van der Waals forces and the DLVO theory * Coagulation and colloid deposition * Numerical simulation of electrokinetic phenomena * Applications of electrokinetic phenomena Because this thorough reference does not require advanced mathematical knowledge, it enables a graduate or a senior undergraduate student approaching the subject for the first time to easily interpret the theories. On the other hand, the application of relevant mathematical principles and the worked examples are extremely useful to established researchers and professionals involved in a wide range of areas, including electroosmosis, streaming potential, electrophoretic separations, industrial practices involving colloids and complex fluids, environmental remediation, suspensions, and microfluidic systems.
Analysis and Applications of Lattice Boltzmann Simulations
Author: Valero-Lara, Pedro
Publisher: IGI Global
ISBN: 1522547614
Category : Computers
Languages : en
Pages : 461
Book Description
Programming has become a significant part of connecting theoretical development and scientific application computation. Fluid dynamics provide an important asset in experimentation and theoretical analysis. Analysis and Applications of Lattice Boltzmann Simulations provides emerging research on the efficient and standard implementations of simulation methods on current and upcoming parallel architectures. While highlighting topics such as hardware accelerators, numerical analysis, and sparse geometries, this publication explores the techniques of specific simulators as well as the multiple extensions and various uses. This book is a vital resource for engineers, professionals, researchers, academics, and students seeking current research on computational fluid dynamics, high-performance computing, and numerical and flow simulations.
Publisher: IGI Global
ISBN: 1522547614
Category : Computers
Languages : en
Pages : 461
Book Description
Programming has become a significant part of connecting theoretical development and scientific application computation. Fluid dynamics provide an important asset in experimentation and theoretical analysis. Analysis and Applications of Lattice Boltzmann Simulations provides emerging research on the efficient and standard implementations of simulation methods on current and upcoming parallel architectures. While highlighting topics such as hardware accelerators, numerical analysis, and sparse geometries, this publication explores the techniques of specific simulators as well as the multiple extensions and various uses. This book is a vital resource for engineers, professionals, researchers, academics, and students seeking current research on computational fluid dynamics, high-performance computing, and numerical and flow simulations.
Theoretical Microfluidics
Author: Henrik Bruus
Publisher: Oxford University Press
ISBN: 0191528587
Category : Science
Languages : en
Pages :
Book Description
Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow, complex flow patterns and acousto-fluidics, as well as the new fields of opto- and nano-fluidics. Throughout the book simple models with analytical solutions are presented to provide the student with a thorough physical understanding of order of magnitudes and various selected microfluidic phenomena and devices. The book grew out of a set of well-tested lecture notes. It is with its many pedagogical exercises designed as a textbook for an advanced undergraduate or first-year graduate course. It is also well suited for self-study.
Publisher: Oxford University Press
ISBN: 0191528587
Category : Science
Languages : en
Pages :
Book Description
Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters introducing microfluidics, the governing equations for mass, momentum and energy, and some basic flow solutions, the following 14 chapters treat hydraulic resistance/compliance, diffusion/dispersion, time-dependent flow, capillarity, electro- and magneto-hydrodynamics, thermal transport, two-phase flow, complex flow patterns and acousto-fluidics, as well as the new fields of opto- and nano-fluidics. Throughout the book simple models with analytical solutions are presented to provide the student with a thorough physical understanding of order of magnitudes and various selected microfluidic phenomena and devices. The book grew out of a set of well-tested lecture notes. It is with its many pedagogical exercises designed as a textbook for an advanced undergraduate or first-year graduate course. It is also well suited for self-study.
BioMEMS
Author: Simona Badilescu
Publisher: CRC Press
ISBN: 1439891168
Category : Medical
Languages : en
Pages : 368
Book Description
Written to cover often overlooked areas in the field of bioMEMS, this volume bridges topics related to biomolecules and complex biological entities with those directly related to the design, fabrication, and characterization of the devices. Unlike other references, this text aids with the fundamental physicochemical understanding of biological processes relevant to the performance of various biosensing devices. Accessible to seniors and graduate students enrolled in engineering programs, the book includes problems in each chapter as well as case studies to provide real-life examples.
Publisher: CRC Press
ISBN: 1439891168
Category : Medical
Languages : en
Pages : 368
Book Description
Written to cover often overlooked areas in the field of bioMEMS, this volume bridges topics related to biomolecules and complex biological entities with those directly related to the design, fabrication, and characterization of the devices. Unlike other references, this text aids with the fundamental physicochemical understanding of biological processes relevant to the performance of various biosensing devices. Accessible to seniors and graduate students enrolled in engineering programs, the book includes problems in each chapter as well as case studies to provide real-life examples.
Fundamentals and Applications of Microfluidics
Author: Nam-Trung Nguyen
Publisher: Integrated Microsystems
ISBN: 9781630813642
Category : Fluidic devices
Languages : en
Pages : 0
Book Description
Now in its Third Edition, the Artech House bestseller, Fundamentals and Applications of Microfluidics, provides engineers and students with the most complete and current coverage of this cutting-edge field. This revised and expanded edition provides updated discussions throughout and features critical new material on microfluidic power sources, sensors, cell separation, organ-on-chip and drug delivery systems, 3D culture devices, droplet-based chemical synthesis, paper-based microfluidics for point-of-care, ion concentration polarization, micro-optofluidics and micro-magnetofluidics. The book shows how to take advantage of the performance benefits of microfluidics and serves as an instant reference for state-of-the-art microfluidics technology and applications. Readers find discussions on a wide range of applications, including fluid control devices, gas and fluid measurement devices, medical testing equipment, and implantable drug pumps. Professionals get practical guidance in choosing the best fabrication and enabling technology for a specific microfluidic application, and learn how to design a microfluidic device. Moreover, engineers get simple calculations, ready-to-use data tables, and rules of thumb that help them make design decisions and determine device characteristics quickly. addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements, and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures. The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.
Publisher: Integrated Microsystems
ISBN: 9781630813642
Category : Fluidic devices
Languages : en
Pages : 0
Book Description
Now in its Third Edition, the Artech House bestseller, Fundamentals and Applications of Microfluidics, provides engineers and students with the most complete and current coverage of this cutting-edge field. This revised and expanded edition provides updated discussions throughout and features critical new material on microfluidic power sources, sensors, cell separation, organ-on-chip and drug delivery systems, 3D culture devices, droplet-based chemical synthesis, paper-based microfluidics for point-of-care, ion concentration polarization, micro-optofluidics and micro-magnetofluidics. The book shows how to take advantage of the performance benefits of microfluidics and serves as an instant reference for state-of-the-art microfluidics technology and applications. Readers find discussions on a wide range of applications, including fluid control devices, gas and fluid measurement devices, medical testing equipment, and implantable drug pumps. Professionals get practical guidance in choosing the best fabrication and enabling technology for a specific microfluidic application, and learn how to design a microfluidic device. Moreover, engineers get simple calculations, ready-to-use data tables, and rules of thumb that help them make design decisions and determine device characteristics quickly. addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements, and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures. The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.