Applications of RNA-Seq and Omics Strategies

Applications of RNA-Seq and Omics Strategies PDF Author: Fabio Marchi
Publisher: BoD – Books on Demand
ISBN: 9535135031
Category : Medical
Languages : en
Pages : 330

Get Book Here

Book Description
The large potential of RNA sequencing and other "omics" techniques has contributed to the production of a huge amount of data pursuing to answer many different questions that surround the science's great unknowns. This book presents an overview about powerful and cost-efficient methods for a comprehensive analysis of RNA-Seq data, introducing and revising advanced concepts in data analysis using the most current algorithms. A holistic view about the entire context where transcriptome is inserted is also discussed here encompassing biological areas with remarkable technological advances in the study of systems biology, from microorganisms to precision medicine.

Applications of RNA-Seq and Omics Strategies

Applications of RNA-Seq and Omics Strategies PDF Author: Fabio Marchi
Publisher: BoD – Books on Demand
ISBN: 9535135031
Category : Medical
Languages : en
Pages : 330

Get Book Here

Book Description
The large potential of RNA sequencing and other "omics" techniques has contributed to the production of a huge amount of data pursuing to answer many different questions that surround the science's great unknowns. This book presents an overview about powerful and cost-efficient methods for a comprehensive analysis of RNA-Seq data, introducing and revising advanced concepts in data analysis using the most current algorithms. A holistic view about the entire context where transcriptome is inserted is also discussed here encompassing biological areas with remarkable technological advances in the study of systems biology, from microorganisms to precision medicine.

Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

OMICS

OMICS PDF Author: Debmalya Barh
Publisher: CRC Press
ISBN: 1466562811
Category : Medical
Languages : en
Pages : 721

Get Book Here

Book Description
With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.

Integration of Omics Approaches and Systems Biology for Clinical Applications

Integration of Omics Approaches and Systems Biology for Clinical Applications PDF Author: Antonia Vlahou
Publisher: John Wiley & Sons
ISBN: 1119181143
Category : Science
Languages : en
Pages : 386

Get Book Here

Book Description
Introduces readers to the state of the art of omics platforms and all aspects of omics approaches for clinical applications This book presents different high throughput omics platforms used to analyze tissue, plasma, and urine. The reader is introduced to state of the art analytical approaches (sample preparation and instrumentation) related to proteomics, peptidomics, transcriptomics, and metabolomics. In addition, the book highlights innovative approaches using bioinformatics, urine miRNAs, and MALDI tissue imaging in the context of clinical applications. Particular emphasis is put on integration of data generated from these different platforms in order to uncover the molecular landscape of diseases. The relevance of each approach to the clinical setting is explained and future applications for patient monitoring or treatment are discussed. Integration of omics Approaches and Systems Biology for Clinical Applications presents an overview of state of the art omics techniques. These methods are employed in order to obtain the comprehensive molecular profile of biological specimens. In addition, computational tools are used for organizing and integrating these multi-source data towards developing molecular models that reflect the pathophysiology of diseases. Investigation of chronic kidney disease (CKD) and bladder cancer are used as test cases. These represent multi-factorial, highly heterogeneous diseases, and are among the most significant health issues in developed countries with a rapidly aging population. The book presents novel insights on CKD and bladder cancer obtained by omics data integration as an example of the application of systems biology in the clinical setting. Describes a range of state of the art omics analytical platforms Covers all aspects of the systems biology approach—from sample preparation to data integration and bioinformatics analysis Contains specific examples of omics methods applied in the investigation of human diseases (Chronic Kidney Disease, Bladder Cancer) Integration of omics Approaches and Systems Biology for Clinical Applications will appeal to a wide spectrum of scientists including biologists, biotechnologists, biochemists, biophysicists, and bioinformaticians working on the different molecular platforms. It is also an excellent text for students interested in these fields.

Evolution of Translational Omics

Evolution of Translational Omics PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309224187
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.

Integrated Omics Approaches to Infectious Diseases

Integrated Omics Approaches to Infectious Diseases PDF Author: Saif Hameed
Publisher: Springer Nature
ISBN: 9811606919
Category : Medical
Languages : en
Pages : 538

Get Book Here

Book Description
This book examines applications of multi-omics approaches for understanding disease etiology, pathogenesis, host-pathogen interactions. It also analyzes the genetics, immunological and metabolic mechanisms underlying the infections. The book also explores genomics, transcriptomics, translational-omics, and metabolomics approaches to understand the pathogenesis and identify potential drug targets. It reviews the role of epigenetic reprogramming in shaping the host-pathogen interactions and presents bioinformatics application in the identification of drug targets. Further, it examines the potential applications of RNA sequencing and non-coding RNA profiling to identify the pathogenesis. Lastly, it offers the current challenges, technological advances, and prospects of using multi-omics technologies in infectious biology.

Applications of RNA-Seq in Biology and Medicine

Applications of RNA-Seq in Biology and Medicine PDF Author: Irina Vlasova-St. Louis
Publisher: BoD – Books on Demand
ISBN: 1839626860
Category : Science
Languages : en
Pages : 144

Get Book Here

Book Description
This book evaluates and comprehensively summarizes the scientific findings that have been achieved through RNA-sequencing (RNA-Seq) technology. RNA-Seq transcriptome profiling of healthy and diseased tissues allows FOR understanding the alterations in cellular phenotypes through the expression of differentially spliced RNA isoforms. Assessment of gene expression by RNA-Seq provides new insight into host response to pathogens, drugs, allergens, and other environmental triggers. RNA-Seq allows us to accurately capture all subtypes of RNA molecules, in any sequenced organism or single-cell type, under different experimental conditions. Merging genomics and transcriptomic profiling provides novel information underlying causative DNA mutations. Combining RNA-Seq with immunoprecipitation and cross-linking techniques is a clever multi-omics strategy assessing transcriptional, post-transcriptional and post-translational levels of gene expression regulation.

Compositional Data Analysis

Compositional Data Analysis PDF Author: Vera Pawlowsky-Glahn
Publisher: John Wiley & Sons
ISBN: 0470711353
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.

RNA-Seq Analysis: Methods, Applications and Challenges

RNA-Seq Analysis: Methods, Applications and Challenges PDF Author: Filippo Geraci
Publisher: Frontiers Media SA
ISBN: 2889637050
Category :
Languages : en
Pages : 169

Get Book Here

Book Description


Introduction to Single Cell Omics

Introduction to Single Cell Omics PDF Author: Xinghua Pan
Publisher: Frontiers Media SA
ISBN: 2889459209
Category :
Languages : en
Pages : 129

Get Book Here

Book Description
Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.