Author: Irina S. Brainina
Publisher: Newnes
ISBN: 012410469X
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
This book addresses one of the key problems in signal processing, the problem of identifying statistical properties of excursions in a random process in order to simplify the theoretical analysis and make it suitable for engineering applications. Precise and approximate formulas are explained, which are relatively simple and can be used for engineering applications such as the design of devices which can overcome the high initial uncertainty of the self-training period. The information presented in the monograph can be used to implement adaptive signal processing devices capable of detecting or recognizing the wanted signals (with a priori unknown statistical properties) against the background noise. The applications presented can be used in a wide range of fields including medicine, radiolocation, telecommunications, surface quality control (flaw detection), image recognition, thermal noise analysis for the design of semiconductors, and calculation of excessive load in mechanics. - Introduces English-speaking students and researchers in to the results obtained in the former Soviet/ Russian academic institutions within last few decades. - Supplies a range of applications suitable for all levels from undergraduate to professional - Contains computer simulations
Applications of Random Process Excursion Analysis
Author: Irina S. Brainina
Publisher: Newnes
ISBN: 012410469X
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
This book addresses one of the key problems in signal processing, the problem of identifying statistical properties of excursions in a random process in order to simplify the theoretical analysis and make it suitable for engineering applications. Precise and approximate formulas are explained, which are relatively simple and can be used for engineering applications such as the design of devices which can overcome the high initial uncertainty of the self-training period. The information presented in the monograph can be used to implement adaptive signal processing devices capable of detecting or recognizing the wanted signals (with a priori unknown statistical properties) against the background noise. The applications presented can be used in a wide range of fields including medicine, radiolocation, telecommunications, surface quality control (flaw detection), image recognition, thermal noise analysis for the design of semiconductors, and calculation of excessive load in mechanics. - Introduces English-speaking students and researchers in to the results obtained in the former Soviet/ Russian academic institutions within last few decades. - Supplies a range of applications suitable for all levels from undergraduate to professional - Contains computer simulations
Publisher: Newnes
ISBN: 012410469X
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
This book addresses one of the key problems in signal processing, the problem of identifying statistical properties of excursions in a random process in order to simplify the theoretical analysis and make it suitable for engineering applications. Precise and approximate formulas are explained, which are relatively simple and can be used for engineering applications such as the design of devices which can overcome the high initial uncertainty of the self-training period. The information presented in the monograph can be used to implement adaptive signal processing devices capable of detecting or recognizing the wanted signals (with a priori unknown statistical properties) against the background noise. The applications presented can be used in a wide range of fields including medicine, radiolocation, telecommunications, surface quality control (flaw detection), image recognition, thermal noise analysis for the design of semiconductors, and calculation of excessive load in mechanics. - Introduces English-speaking students and researchers in to the results obtained in the former Soviet/ Russian academic institutions within last few decades. - Supplies a range of applications suitable for all levels from undergraduate to professional - Contains computer simulations
Random Processes with Applications to Circuits and Communications
Author: Bernard C. Levy
Publisher: Springer Nature
ISBN: 3030222977
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
This textbook is based on 20 years of teaching a graduate-level course in random processes to a constituency extending beyond signal processing, communications, control, and networking, and including in particular circuits, RF and optics graduate students. In order to accommodate today’s circuits students’ needs to understand noise modeling, while covering classical material on Brownian motion, Poisson processes, and power spectral densities, the author has inserted discussions of thermal noise, shot noise, quantization noise and oscillator phase noise. At the same time, techniques used to analyze modulated communications and radar signals, such as the baseband representation of bandpass random signals, or the computation of power spectral densities of a wide variety of modulated signals, are presented. This book also emphasizes modeling skills, primarily through the inclusion of long problems at the end of each chapter, where starting from a description of the operation of a system, a model is constructed and then analyzed. Provides semester-length coverage of random processes, applicable to the analysis of electrical and computer engineering systems; Designed to be accessible to students with varying backgrounds in undergraduate mathematics and engineering; Includes solved examples throughout the discussion, as well as extensive problem sets at the end of every chapter; Develops and reinforces student’s modeling skills, with inclusion of modeling problems in every chapter; Solutions for instructors included.
Publisher: Springer Nature
ISBN: 3030222977
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
This textbook is based on 20 years of teaching a graduate-level course in random processes to a constituency extending beyond signal processing, communications, control, and networking, and including in particular circuits, RF and optics graduate students. In order to accommodate today’s circuits students’ needs to understand noise modeling, while covering classical material on Brownian motion, Poisson processes, and power spectral densities, the author has inserted discussions of thermal noise, shot noise, quantization noise and oscillator phase noise. At the same time, techniques used to analyze modulated communications and radar signals, such as the baseband representation of bandpass random signals, or the computation of power spectral densities of a wide variety of modulated signals, are presented. This book also emphasizes modeling skills, primarily through the inclusion of long problems at the end of each chapter, where starting from a description of the operation of a system, a model is constructed and then analyzed. Provides semester-length coverage of random processes, applicable to the analysis of electrical and computer engineering systems; Designed to be accessible to students with varying backgrounds in undergraduate mathematics and engineering; Includes solved examples throughout the discussion, as well as extensive problem sets at the end of every chapter; Develops and reinforces student’s modeling skills, with inclusion of modeling problems in every chapter; Solutions for instructors included.
Modern Stochastics and Applications
Author: Volodymyr Korolyuk
Publisher: Springer Science & Business Media
ISBN: 3319035126
Category : Mathematics
Languages : en
Pages : 352
Book Description
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
Publisher: Springer Science & Business Media
ISBN: 3319035126
Category : Mathematics
Languages : en
Pages : 352
Book Description
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, stochastic models of evolution systems, financial mathematics, risk processes and actuarial mathematics and information security.
Excursions of Markov Processes
Author: Robert M. Blumenthal
Publisher: Springer Science & Business Media
ISBN: 1468494120
Category : Mathematics
Languages : en
Pages : 287
Book Description
Let {Xti t ~ O} be a Markov process in Rl, and break up the path X t into (random) component pieces consisting of the zero set ({ tlX = O}) and t the "excursions away from 0," that is pieces of path X. : T ::5 s ::5 t, with Xr- = X = 0, but X. 1= 0 for T
Publisher: Springer Science & Business Media
ISBN: 1468494120
Category : Mathematics
Languages : en
Pages : 287
Book Description
Let {Xti t ~ O} be a Markov process in Rl, and break up the path X t into (random) component pieces consisting of the zero set ({ tlX = O}) and t the "excursions away from 0," that is pieces of path X. : T ::5 s ::5 t, with Xr- = X = 0, but X. 1= 0 for T
Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus
Author: L. C. G. Rogers
Publisher: Cambridge University Press
ISBN: 9780521775939
Category : Mathematics
Languages : en
Pages : 498
Book Description
This celebrated volume gives an accessible introduction to stochastic integrals, stochastic differential equations, excursion theory and the general theory of processes.
Publisher: Cambridge University Press
ISBN: 9780521775939
Category : Mathematics
Languages : en
Pages : 498
Book Description
This celebrated volume gives an accessible introduction to stochastic integrals, stochastic differential equations, excursion theory and the general theory of processes.
Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory
Author: Harold Joseph Kushner
Publisher: MIT Press
ISBN: 9780262110907
Category : Computers
Languages : en
Pages : 296
Book Description
Control and communications engineers, physicists, and probability theorists, among others, will find this book unique. It contains a detailed development of approximation and limit theorems and methods for random processes and applies them to numerous problems of practical importance. In particular, it develops usable and broad conditions and techniques for showing that a sequence of processes converges to a Markov diffusion or jump process. This is useful when the natural physical model is quite complex, in which case a simpler approximation la diffusion process, for example) is usually made. The book simplifies and extends some important older methods and develops some powerful new ones applicable to a wide variety of limit and approximation problems. The theory of weak convergence of probability measures is introduced along with general and usable methods (for example, perturbed test function, martingale, and direct averaging) for proving tightness and weak convergence. Kushner's study begins with a systematic development of the method. It then treats dynamical system models that have state-dependent noise or nonsmooth dynamics. Perturbed Liapunov function methods are developed for stability studies of nonMarkovian problems and for the study of asymptotic distributions of non-Markovian systems. Three chapters are devoted to applications in control and communication theory (for example, phase-locked loops and adoptive filters). Smallnoise problems and an introduction to the theory of large deviations and applications conclude the book. Harold J. Kushner is Professor of Applied Mathematics and Engineering at Brown University and is one of the leading researchers in the area of stochastic processes concerned with analysis and synthesis in control and communications theory. This book is the sixth in The MIT Press Series in Signal Processing, Optimization, and Control, edited by Alan S. Willsky.
Publisher: MIT Press
ISBN: 9780262110907
Category : Computers
Languages : en
Pages : 296
Book Description
Control and communications engineers, physicists, and probability theorists, among others, will find this book unique. It contains a detailed development of approximation and limit theorems and methods for random processes and applies them to numerous problems of practical importance. In particular, it develops usable and broad conditions and techniques for showing that a sequence of processes converges to a Markov diffusion or jump process. This is useful when the natural physical model is quite complex, in which case a simpler approximation la diffusion process, for example) is usually made. The book simplifies and extends some important older methods and develops some powerful new ones applicable to a wide variety of limit and approximation problems. The theory of weak convergence of probability measures is introduced along with general and usable methods (for example, perturbed test function, martingale, and direct averaging) for proving tightness and weak convergence. Kushner's study begins with a systematic development of the method. It then treats dynamical system models that have state-dependent noise or nonsmooth dynamics. Perturbed Liapunov function methods are developed for stability studies of nonMarkovian problems and for the study of asymptotic distributions of non-Markovian systems. Three chapters are devoted to applications in control and communication theory (for example, phase-locked loops and adoptive filters). Smallnoise problems and an introduction to the theory of large deviations and applications conclude the book. Harold J. Kushner is Professor of Applied Mathematics and Engineering at Brown University and is one of the leading researchers in the area of stochastic processes concerned with analysis and synthesis in control and communications theory. This book is the sixth in The MIT Press Series in Signal Processing, Optimization, and Control, edited by Alan S. Willsky.
Random Vibration and Spectral Analysis/Vibrations aléatoires et analyse spectral
Author: A. Preumont
Publisher: Springer Science & Business Media
ISBN: 9401728402
Category : Mathematics
Languages : en
Pages : 283
Book Description
I became interested in Random Vibration during the preparation of my PhD dissertation, which was concerned with the seismic response of nuclear reactor cores. I was initiated into this field through the cla.ssical books by Y.K.Lin, S.H.Crandall and a few others. After the completion of my PhD, in 1981, my supervisor M.Gera.din encouraged me to prepare a course in Random Vibration for fourth and fifth year students in Aeronautics, at the University of Liege. There was at the time very little material available in French on that subject. A first draft was produced during 1983 and 1984 and revised in 1986. These notes were published by the Presses Poly techniques et Universitaires Romandes (Lausanne, Suisse) in 1990. When Kluwer decided to publish an English translation ofthe book in 1992, I had to choose between letting Kluwer translate the French text in-extenso or doing it myself, which would allow me to carry out a sustantial revision of the book. I took the second option and decided to rewrite or delete some of the original text and include new material, based on my personal experience, or reflecting recent technical advances. Chapter 6, devoted to the response of multi degree offreedom structures, has been completely rewritten, and Chapter 11 on random fatigue is entirely new. The computer programs which have been developed in parallel with these chapters have been incorporated in the general purpose finite element software SAMCEF, developed at the University of Liege.
Publisher: Springer Science & Business Media
ISBN: 9401728402
Category : Mathematics
Languages : en
Pages : 283
Book Description
I became interested in Random Vibration during the preparation of my PhD dissertation, which was concerned with the seismic response of nuclear reactor cores. I was initiated into this field through the cla.ssical books by Y.K.Lin, S.H.Crandall and a few others. After the completion of my PhD, in 1981, my supervisor M.Gera.din encouraged me to prepare a course in Random Vibration for fourth and fifth year students in Aeronautics, at the University of Liege. There was at the time very little material available in French on that subject. A first draft was produced during 1983 and 1984 and revised in 1986. These notes were published by the Presses Poly techniques et Universitaires Romandes (Lausanne, Suisse) in 1990. When Kluwer decided to publish an English translation ofthe book in 1992, I had to choose between letting Kluwer translate the French text in-extenso or doing it myself, which would allow me to carry out a sustantial revision of the book. I took the second option and decided to rewrite or delete some of the original text and include new material, based on my personal experience, or reflecting recent technical advances. Chapter 6, devoted to the response of multi degree offreedom structures, has been completely rewritten, and Chapter 11 on random fatigue is entirely new. The computer programs which have been developed in parallel with these chapters have been incorporated in the general purpose finite element software SAMCEF, developed at the University of Liege.
Random Vibration - Status and Recent Developments
Author: I. Elishakoff
Publisher: Elsevier
ISBN: 1483289958
Category : Technology & Engineering
Languages : en
Pages : 586
Book Description
This unique book commemorates the 65th birthday of Stephen H. Crandall - one of the founding fathers and most active developers and elucidators of the science of random vibrations. Leading scientists from all over the world have contributed 33 papers addressing almost every important problem of random vibrations. The book thus represents both the state-of-the-art as well as the most recent developments, and will appeal to those in industry and academia who want to achieve a rigorous understanding of the many facets of the subject. A thorough study of the book will also help lay the foundations for future directions in research.
Publisher: Elsevier
ISBN: 1483289958
Category : Technology & Engineering
Languages : en
Pages : 586
Book Description
This unique book commemorates the 65th birthday of Stephen H. Crandall - one of the founding fathers and most active developers and elucidators of the science of random vibrations. Leading scientists from all over the world have contributed 33 papers addressing almost every important problem of random vibrations. The book thus represents both the state-of-the-art as well as the most recent developments, and will appeal to those in industry and academia who want to achieve a rigorous understanding of the many facets of the subject. A thorough study of the book will also help lay the foundations for future directions in research.
Bibliography
Author: Jet Propulsion Laboratory (U.S.)
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 204
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 204
Book Description
Stochastic Geometry and Its Applications
Author: Sung Nok Chiu
Publisher: John Wiley & Sons
ISBN: 1118658256
Category : Mathematics
Languages : en
Pages : 561
Book Description
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
Publisher: John Wiley & Sons
ISBN: 1118658256
Category : Mathematics
Languages : en
Pages : 561
Book Description
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.