Bicomplex Holomorphic Functions

Bicomplex Holomorphic Functions PDF Author: M. Elena Luna-Elizarrarás
Publisher: Birkhäuser
ISBN: 3319248685
Category : Mathematics
Languages : en
Pages : 231

Get Book Here

Book Description
The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. In recent years, due largely to the work of G.B. Price, there has been a resurgence of interest in the study of these numbers and, more importantly, in the study of functions defined on the ring of bicomplex numbers, which mimic the behavior of holomorphic functions of a complex variable. While the algebra of bicomplex numbers is a four-dimensional real algebra, it is useful to think of it as a “complexification” of the field of complex numbers; from this perspective, the bicomplex algebra possesses the properties of a one-dimensional theory inside four real dimensions. Its rich analysis and innovative geometry provide new ideas and potential applications in relativity and quantum mechanics alike. The book will appeal to researchers in the fields of complex, hypercomplex and functional analysis, as well as undergraduate and graduate students with an interest in one- or multidimensional complex analysis.

Bicomplex Holomorphic Functions

Bicomplex Holomorphic Functions PDF Author: M. Elena Luna-Elizarrarás
Publisher: Birkhäuser
ISBN: 3319248685
Category : Mathematics
Languages : en
Pages : 231

Get Book Here

Book Description
The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. In recent years, due largely to the work of G.B. Price, there has been a resurgence of interest in the study of these numbers and, more importantly, in the study of functions defined on the ring of bicomplex numbers, which mimic the behavior of holomorphic functions of a complex variable. While the algebra of bicomplex numbers is a four-dimensional real algebra, it is useful to think of it as a “complexification” of the field of complex numbers; from this perspective, the bicomplex algebra possesses the properties of a one-dimensional theory inside four real dimensions. Its rich analysis and innovative geometry provide new ideas and potential applications in relativity and quantum mechanics alike. The book will appeal to researchers in the fields of complex, hypercomplex and functional analysis, as well as undergraduate and graduate students with an interest in one- or multidimensional complex analysis.

Application of Holomorphic Functions in Two and Higher Dimensions

Application of Holomorphic Functions in Two and Higher Dimensions PDF Author: Klaus Gürlebeck
Publisher: Springer
ISBN: 3034809646
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schrödinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis.

From Holomorphic Functions to Complex Manifolds

From Holomorphic Functions to Complex Manifolds PDF Author: Klaus Fritzsche
Publisher: Springer Science & Business Media
ISBN: 146849273X
Category : Mathematics
Languages : en
Pages : 406

Get Book Here

Book Description
This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.

Holomorphic Functions and Integral Representations in Several Complex Variables

Holomorphic Functions and Integral Representations in Several Complex Variables PDF Author: R. Michael Range
Publisher: Springer Science & Business Media
ISBN: 1475719183
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC", including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.

Complex Geometry

Complex Geometry PDF Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336

Get Book Here

Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

The Convenient Setting of Global Analysis

The Convenient Setting of Global Analysis PDF Author: Andreas Kriegl
Publisher: American Mathematical Society
ISBN: 1470478935
Category : Mathematics
Languages : en
Pages : 631

Get Book Here

Book Description
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.

A Course in Complex Analysis and Riemann Surfaces

A Course in Complex Analysis and Riemann Surfaces PDF Author: Wilhelm Schlag
Publisher: American Mathematical Society
ISBN: 0821898477
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.

Geometry of Holomorphic Mappings

Geometry of Holomorphic Mappings PDF Author: Sergey Pinchuk
Publisher: Springer Nature
ISBN: 3031371496
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been developed in connection with these questions, and the goal of this book is to introduce the reader to some of these approaches and to demonstrate how they can be used in the context of boundary properties of holomorphic maps. The authors present substantial results concerning holomorphic mappings in several complex variables with improved and often simplified proofs. Emphasis is placed on geometric methods, including the Kobayashi metric, the Scaling method, Segre varieties, and the Reflection principle. Geometry of Holomorphic Mappings will provide a valuable resource for PhD students in complex analysis and complex geometry; it will also be of interest to researchers in these areas as a reference.

Differential Geometry and Its Applications

Differential Geometry and Its Applications PDF Author: Oldřich Kowalski
Publisher: World Scientific
ISBN: 9812790616
Category : Mathematics
Languages : en
Pages : 732

Get Book Here

Book Description
This volume contains invited lectures and selected research papers in the fields of classical and modern differential geometry, global analysis, and geometric methods in physics, presented at the 10th International Conference on Differential Geometry and its Applications (DGA2007), held in Olomouc, Czech Republic.The book covers recent developments and the latest results in the following fields: Riemannian geometry, connections, jets, differential invariants, the calculus of variations on manifolds, differential equations, Finsler structures, and geometric methods in physics. It is also a celebration of the 300th anniversary of the birth of one of the greatest mathematicians, Leonhard Euler, and includes the Euler lecture OC Leonhard Euler OCo 300 years onOCO by R Wilson. Notable contributors include J F Cariena, M Castrilln Lpez, J Erichhorn, J-H Eschenburg, I KoliO, A P Kopylov, J Korbai, O Kowalski, B Kruglikov, D Krupka, O Krupkovi, R L(r)andre, Haizhong Li, S Maeda, M A Malakhaltsev, O I Mokhov, J Muoz Masqu(r), S Preston, V Rovenski, D J Saunders, M Sekizawa, J Slovik, J Szilasi, L Tamissy, P Walczak, and others."

Numerical Range of Holomorphic Mappings and Applications

Numerical Range of Holomorphic Mappings and Applications PDF Author: Mark Elin
Publisher: Springer
ISBN: 3030050203
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
This book describes recent developments as well as some classical results regarding holomorphic mappings. The book starts with a brief survey of the theory of semigroups of linear operators including the Hille-Yosida and the Lumer-Phillips theorems. The numerical range and the spectrum of closed densely defined linear operators are then discussed in more detail and an overview of ergodic theory is presented. The analytic extension of semigroups of linear operators is also discussed. The recent study of the numerical range of composition operators on the unit disk is mentioned. Then, the basic notions and facts in infinite dimensional holomorphy and hyperbolic geometry in Banach and Hilbert spaces are presented, L. A. Harris' theory of the numerical range of holomorphic mappings is generalized, and the main properties of the so-called quasi-dissipative mappings and their growth estimates are studied. In addition, geometric and quantitative analytic aspects of fixed point theory are discussed. A special chapter is devoted to applications of the numerical range to diverse geometric and analytic problems.