Author: Neelu Nagpal
Publisher: CRC Press
ISBN: 1000963977
Category : Computers
Languages : en
Pages : 250
Book Description
In the era of propelling traditional energy systems to evolve towards smart energy systems, including power generation, energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, and domestic & industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution automation, energy regulation and control, and energy trading. This book covers the applications of various big data analytics, artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies such as the Internet of Things, blockchain, etc. for smart home solutions, and smart city solutions in depth in the context of the modern power systems. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI business models.
Applications of Big Data and Artificial Intelligence in Smart Energy Systems
Author: Neelu Nagpal
Publisher: CRC Press
ISBN: 1000963977
Category : Computers
Languages : en
Pages : 250
Book Description
In the era of propelling traditional energy systems to evolve towards smart energy systems, including power generation, energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, and domestic & industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution automation, energy regulation and control, and energy trading. This book covers the applications of various big data analytics, artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies such as the Internet of Things, blockchain, etc. for smart home solutions, and smart city solutions in depth in the context of the modern power systems. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI business models.
Publisher: CRC Press
ISBN: 1000963977
Category : Computers
Languages : en
Pages : 250
Book Description
In the era of propelling traditional energy systems to evolve towards smart energy systems, including power generation, energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, and domestic & industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution automation, energy regulation and control, and energy trading. This book covers the applications of various big data analytics, artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies such as the Internet of Things, blockchain, etc. for smart home solutions, and smart city solutions in depth in the context of the modern power systems. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI business models.
Applications of Big Data and Artificial Intelligence in Smart Energy Systems
Author: Neetika Kaushal Nagpal
Publisher:
ISBN: 9781003440864
Category : SCIENCE
Languages : en
Pages : 0
Book Description
In the era of propelling traditional energy systems to evolve towards smart energy systems, systems, including power generation energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, and domestic and industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution automation, energy regulation and control, and energy trading. This book covers the applications of various big data analytics, artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies such as the Internet of Things, blockchain, etc. for smart home solutions, and smart city solutions in depth in the context of the modern power systems. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI business models.
Publisher:
ISBN: 9781003440864
Category : SCIENCE
Languages : en
Pages : 0
Book Description
In the era of propelling traditional energy systems to evolve towards smart energy systems, systems, including power generation energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, and domestic and industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution automation, energy regulation and control, and energy trading. This book covers the applications of various big data analytics, artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies such as the Internet of Things, blockchain, etc. for smart home solutions, and smart city solutions in depth in the context of the modern power systems. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI business models.
Artificial Intelligence Techniques for a Scalable Energy Transition
Author: Moamar Sayed-Mouchaweh
Publisher: Springer Nature
ISBN: 3030427269
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
This book presents research in artificial techniques using intelligence for energy transition, outlining several applications including production systems, energy production, energy distribution, energy management, renewable energy production, cyber security, industry 4.0 and internet of things etc. The book goes beyond standard application by placing a specific focus on the use of AI techniques to address the challenges related to the different applications and topics of energy transition. The contributions are classified according to the market and actor interactions (service providers, manufacturers, customers, integrators, utilities etc.), to the SG architecture model (physical layer, infrastructure layer, and business layer), to the digital twin of SG (business model, operational model, fault/transient model, and asset model), and to the application domain (demand side management, load monitoring, micro grids, energy consulting (residents, utilities), energy saving, dynamic pricing revenue management and smart meters, etc.).
Publisher: Springer Nature
ISBN: 3030427269
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
This book presents research in artificial techniques using intelligence for energy transition, outlining several applications including production systems, energy production, energy distribution, energy management, renewable energy production, cyber security, industry 4.0 and internet of things etc. The book goes beyond standard application by placing a specific focus on the use of AI techniques to address the challenges related to the different applications and topics of energy transition. The contributions are classified according to the market and actor interactions (service providers, manufacturers, customers, integrators, utilities etc.), to the SG architecture model (physical layer, infrastructure layer, and business layer), to the digital twin of SG (business model, operational model, fault/transient model, and asset model), and to the application domain (demand side management, load monitoring, micro grids, energy consulting (residents, utilities), energy saving, dynamic pricing revenue management and smart meters, etc.).
Artificial Intelligence and Internet of Things for Renewable Energy Systems
Author: Neeraj Priyadarshi
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110714043
Category : Computers
Languages : en
Pages : 320
Book Description
This book explains the application of Artificial Intelligence and Internet of Things on green energy systems. The design of smart grids and intelligent networks enhances energy efficiency, while the collection of environmental data through sensors and their prediction through machine learning models improve the reliability of green energy systems.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110714043
Category : Computers
Languages : en
Pages : 320
Book Description
This book explains the application of Artificial Intelligence and Internet of Things on green energy systems. The design of smart grids and intelligent networks enhances energy efficiency, while the collection of environmental data through sensors and their prediction through machine learning models improve the reliability of green energy systems.
Applications of Big Data and Artificial Intelligence in Smart Energy Systems
Author: Neelu Nagpal
Publisher: CRC Press
ISBN: 1000963829
Category : Science
Languages : en
Pages : 318
Book Description
In the era of propelling traditional energy systems to evolve towards smart energy systems, including power generation, energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, domestic loads, and industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution, automation, energy regulation & control, and energy trading. This book covers the applications of various big data analytics,artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies for modern power systems such as the Internet of Things, Blockchain for smart home and smart city solutions in depth. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Smart meters • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI based smart energy business models • Smart home solutions • Blockchain solutions for smart grids.
Publisher: CRC Press
ISBN: 1000963829
Category : Science
Languages : en
Pages : 318
Book Description
In the era of propelling traditional energy systems to evolve towards smart energy systems, including power generation, energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, domestic loads, and industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution, automation, energy regulation & control, and energy trading. This book covers the applications of various big data analytics,artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies for modern power systems such as the Internet of Things, Blockchain for smart home and smart city solutions in depth. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Smart meters • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI based smart energy business models • Smart home solutions • Blockchain solutions for smart grids.
Artificial Intelligence for Smart and Sustainable Energy Systems and Applications
Author: Miltiadis D. Lytras
Publisher: MDPI
ISBN: 303928889X
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy research, particularly research devoted to non-intrusive load monitoring, network, and grid, as well as other emerging topics. The presented artificial intelligence algorithms may provide insight into how to apply similar approaches, subject to fine-tuning and customization, to other unexplored energy research. The ultimate goal is to fully apply artificial intelligence to the energy sector. This book may serve as a guide for professionals, researchers, and data scientists—namely, how to share opinions and exchange ideas so as to facilitate a better fusion of energy, academic, and industry research, and improve in the quality of people's daily life activities.
Publisher: MDPI
ISBN: 303928889X
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy research, particularly research devoted to non-intrusive load monitoring, network, and grid, as well as other emerging topics. The presented artificial intelligence algorithms may provide insight into how to apply similar approaches, subject to fine-tuning and customization, to other unexplored energy research. The ultimate goal is to fully apply artificial intelligence to the energy sector. This book may serve as a guide for professionals, researchers, and data scientists—namely, how to share opinions and exchange ideas so as to facilitate a better fusion of energy, academic, and industry research, and improve in the quality of people's daily life activities.
Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies
Author: Krishna Kumar
Publisher: Elsevier
ISBN: 0323912281
Category : Science
Languages : en
Pages : 416
Book Description
Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies analyzes the changes in this energy generation shift, including issues of grid stability with variability in renewable energy vs. traditional baseload energy generation. Providing solutions to current critical environmental, economic and social issues, this book comprises various complex nonlinear interactions among different parameters to drive the integration of renewable energy into the grid. It considers how artificial intelligence and machine learning techniques are being developed to produce more reliable energy generation to optimize system performance and provide sustainable development. As the use of artificial intelligence to revolutionize the energy market and harness the potential of renewable energy is essential, this reference provides practical guidance on the application of renewable energy with AI, along with machine learning techniques and capabilities in design, modeling and for forecasting performance predictions for the optimization of renewable energy systems. It is targeted at researchers, academicians and industry professionals working in the field of renewable energy, AI, machine learning, grid Stability and energy generation. Covers the best-performing methods and approaches for designing renewable energy systems with AI integration in a real-time environment Gives advanced techniques for monitoring current technologies and how to efficiently utilize the energy grid spectrum Addresses the advanced field of renewable generation, from research, impact and idea development of new applications
Publisher: Elsevier
ISBN: 0323912281
Category : Science
Languages : en
Pages : 416
Book Description
Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies analyzes the changes in this energy generation shift, including issues of grid stability with variability in renewable energy vs. traditional baseload energy generation. Providing solutions to current critical environmental, economic and social issues, this book comprises various complex nonlinear interactions among different parameters to drive the integration of renewable energy into the grid. It considers how artificial intelligence and machine learning techniques are being developed to produce more reliable energy generation to optimize system performance and provide sustainable development. As the use of artificial intelligence to revolutionize the energy market and harness the potential of renewable energy is essential, this reference provides practical guidance on the application of renewable energy with AI, along with machine learning techniques and capabilities in design, modeling and for forecasting performance predictions for the optimization of renewable energy systems. It is targeted at researchers, academicians and industry professionals working in the field of renewable energy, AI, machine learning, grid Stability and energy generation. Covers the best-performing methods and approaches for designing renewable energy systems with AI integration in a real-time environment Gives advanced techniques for monitoring current technologies and how to efficiently utilize the energy grid spectrum Addresses the advanced field of renewable generation, from research, impact and idea development of new applications
Smart Meter Data Analytics
Author: Yi Wang
Publisher: Springer Nature
ISBN: 9811526249
Category : Business & Economics
Languages : en
Pages : 306
Book Description
This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.
Publisher: Springer Nature
ISBN: 9811526249
Category : Business & Economics
Languages : en
Pages : 306
Book Description
This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.
Big Data Application in Power Systems
Author: Reza Arghandeh
Publisher: Elsevier
ISBN: 0443219516
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Big Data Application in Power Systems, Second Edition presents a thorough update of the previous volume, providing readers with step-by-step guidance in big data analytics utilization for power system diagnostics, operation, and control. Bringing back a team of global experts and drawing on fresh, emerging perspectives, this book provides cutting-edge advice for meeting today's challenges in this rapidly accelerating area of power engineering. Divided into three parts, this book begins by breaking down the big picture for electric utilities, before zooming in to examine theoretical problems and solutions in detail. Finally, the third section provides case studies and applications, demonstrating solution troubleshooting and design from a variety of perspectives and for a range of technologies. Readers will develop new strategies and techniques for leveraging data towards real-world outcomes. Including five brand new chapters on emerging technological solutions, Big Data Application in Power Systems, Second Edition remains an essential resource for the reader aiming to utilize the potential of big data in the power systems of the future. - Provides a total refresh to include the most up-to-date research, developments, and challenges - Focuses on practical techniques, including rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches for processing high dimensional, heterogeneous, and spatiotemporal data - Engages with cross-disciplinary lessons, drawing on the impact of intersectional technology including statistics, computer science, and bioinformatics - Includes five brand new chapters on hot topics, ranging from uncertainty decision-making to features, selection methods, and the opportunities provided by social network data
Publisher: Elsevier
ISBN: 0443219516
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
Big Data Application in Power Systems, Second Edition presents a thorough update of the previous volume, providing readers with step-by-step guidance in big data analytics utilization for power system diagnostics, operation, and control. Bringing back a team of global experts and drawing on fresh, emerging perspectives, this book provides cutting-edge advice for meeting today's challenges in this rapidly accelerating area of power engineering. Divided into three parts, this book begins by breaking down the big picture for electric utilities, before zooming in to examine theoretical problems and solutions in detail. Finally, the third section provides case studies and applications, demonstrating solution troubleshooting and design from a variety of perspectives and for a range of technologies. Readers will develop new strategies and techniques for leveraging data towards real-world outcomes. Including five brand new chapters on emerging technological solutions, Big Data Application in Power Systems, Second Edition remains an essential resource for the reader aiming to utilize the potential of big data in the power systems of the future. - Provides a total refresh to include the most up-to-date research, developments, and challenges - Focuses on practical techniques, including rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches for processing high dimensional, heterogeneous, and spatiotemporal data - Engages with cross-disciplinary lessons, drawing on the impact of intersectional technology including statistics, computer science, and bioinformatics - Includes five brand new chapters on hot topics, ranging from uncertainty decision-making to features, selection methods, and the opportunities provided by social network data
Artificial Intelligence and Big Data Analytics for Smart Healthcare
Author: Miltiadis Lytras
Publisher: Academic Press
ISBN: 0128220627
Category : Medical
Languages : en
Pages : 292
Book Description
Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers
Publisher: Academic Press
ISBN: 0128220627
Category : Medical
Languages : en
Pages : 292
Book Description
Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. - Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine - Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them - Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers