Author: K. Friedrich
Publisher: Elsevier
ISBN: 0444597212
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
This multiauthor volume provides a useful summary of current knowledge on the application of fracture mechanics to composite materials. It has been written to fill the gap between the literature on fundamental principles of fracture mechanics and the special publications on the fracture properties of conventional materials, such as metals, polymers and ceramics.The data are represented in the form of about 420 figures (including diagrams, schematics and photographs) and 80 tables. The author index covers more than 500 references, and the subject index more than 1000 key words.
Application of Fracture Mechanics to Composite Materials
Author: K. Friedrich
Publisher: Elsevier
ISBN: 0444597212
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
This multiauthor volume provides a useful summary of current knowledge on the application of fracture mechanics to composite materials. It has been written to fill the gap between the literature on fundamental principles of fracture mechanics and the special publications on the fracture properties of conventional materials, such as metals, polymers and ceramics.The data are represented in the form of about 420 figures (including diagrams, schematics and photographs) and 80 tables. The author index covers more than 500 references, and the subject index more than 1000 key words.
Publisher: Elsevier
ISBN: 0444597212
Category : Technology & Engineering
Languages : en
Pages : 686
Book Description
This multiauthor volume provides a useful summary of current knowledge on the application of fracture mechanics to composite materials. It has been written to fill the gap between the literature on fundamental principles of fracture mechanics and the special publications on the fracture properties of conventional materials, such as metals, polymers and ceramics.The data are represented in the form of about 420 figures (including diagrams, schematics and photographs) and 80 tables. The author index covers more than 500 references, and the subject index more than 1000 key words.
Application of Fracture Mechanics to Cementitious Composites
Author: S.P. Shah
Publisher: Springer Science & Business Media
ISBN: 9400951213
Category : Science
Languages : en
Pages : 701
Book Description
Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.
Publisher: Springer Science & Business Media
ISBN: 9400951213
Category : Science
Languages : en
Pages : 701
Book Description
Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.
Damage and Fracture of Composite Materials and Structures
Author: Mohd Nasir Tamin
Publisher: Springer Science & Business Media
ISBN: 3642236596
Category : Science
Languages : en
Pages : 244
Book Description
This monograph presents recent research findings on fracture properties and behavior of the composites, and their damage and cracking process under both quasi-static and impact loading conditions. Theoretical treatment, experimental investigation and numerical simulation aspects of the mechanics of composites, including sandwich structures are included.
Publisher: Springer Science & Business Media
ISBN: 3642236596
Category : Science
Languages : en
Pages : 244
Book Description
This monograph presents recent research findings on fracture properties and behavior of the composites, and their damage and cracking process under both quasi-static and impact loading conditions. Theoretical treatment, experimental investigation and numerical simulation aspects of the mechanics of composites, including sandwich structures are included.
The Virtual Crack Closure Technique: History, Approach and Applications
Author: Ronald Krueger
Publisher:
ISBN:
Category :
Languages : en
Pages : 66
Book Description
An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral elements with linear and quadratic shape functions are given. Formula for applying the technique in conjuction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.
Publisher:
ISBN:
Category :
Languages : en
Pages : 66
Book Description
An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral elements with linear and quadratic shape functions are given. Formula for applying the technique in conjuction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.
Interface Fracture and Delaminations in Composite Materials
Author: Leslie Banks-Sills
Publisher: Springer
ISBN: 3319603272
Category : Science
Languages : en
Pages : 125
Book Description
Part I of this SpringerBrief presents the problem of a crack between two dissimilar isotropic materials and describes the mathematical background. A fracture criterion is discussed and Methods for calculating fracture parameters such as stress intensity factors using the finite element method and three post-processors are considered. Actual test data and both deterministic and statistical failure curves are presented.In Part II of the book, similar descriptions are given for delaminations in composite laminates. The mathematical treatment of this type of damage including the first term of the asymptotic expansion of the stress and displacement fields is considered. Numerical post-processors for determining stress intensity factors for these cases are reviewed. Two examples of specific laminates are presented: one with a failure curve and the other with a failure surface. Finally, beam specimens used for testing such failures are discussed.
Publisher: Springer
ISBN: 3319603272
Category : Science
Languages : en
Pages : 125
Book Description
Part I of this SpringerBrief presents the problem of a crack between two dissimilar isotropic materials and describes the mathematical background. A fracture criterion is discussed and Methods for calculating fracture parameters such as stress intensity factors using the finite element method and three post-processors are considered. Actual test data and both deterministic and statistical failure curves are presented.In Part II of the book, similar descriptions are given for delaminations in composite laminates. The mathematical treatment of this type of damage including the first term of the asymptotic expansion of the stress and displacement fields is considered. Numerical post-processors for determining stress intensity factors for these cases are reviewed. Two examples of specific laminates are presented: one with a failure curve and the other with a failure surface. Finally, beam specimens used for testing such failures are discussed.
Fracture of Composite Materials
Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9400976097
Category : Science
Languages : en
Pages : 488
Book Description
The Second USA-USSR Symposium on Fna~e 06 Compo~~e Mat~a£h took place at Lehigh University, Bethlehem, Pennsylvania, during 9-12 March, 1981. This bilateral program between the U. S. and Soviet Union was organized by Professor George C. Sih of the Institute of Fracture and Solid Mechanics at Lehigh Uni versity and Dr. Vitauts P. Tamuzs of the Institute of Polymer Mechanics of the Academy of Sciences of the Latvian SSR in Riga. The First Symposium was held in 1978 at Jurmala near the coast of Riga Bay. The primary reasons for initiating this series of Symposia were to dissemi nate present knowledge, to promote interchange of ideas, and to stimulate addi tional studies on the development of composite materials between the U. S. and USSR. Both countries have a vested interest in developing the capability to assess and utilize the attractive mechanical properties of composites so that they can be tailor-made to meet specific design requirements. Despite the in creasing number of published papers and articles, there is no communication more effective than on a person-to-person basis. It is with this objective in mind that a small group of engineers and scientists from the U. S. and USSR have planned to meet every two years to report recent progress on composite material research. The size of this group is approximately sixty (60) participants. The presentation involves about forty (40) technical papers which are published in volume.
Publisher: Springer Science & Business Media
ISBN: 9400976097
Category : Science
Languages : en
Pages : 488
Book Description
The Second USA-USSR Symposium on Fna~e 06 Compo~~e Mat~a£h took place at Lehigh University, Bethlehem, Pennsylvania, during 9-12 March, 1981. This bilateral program between the U. S. and Soviet Union was organized by Professor George C. Sih of the Institute of Fracture and Solid Mechanics at Lehigh Uni versity and Dr. Vitauts P. Tamuzs of the Institute of Polymer Mechanics of the Academy of Sciences of the Latvian SSR in Riga. The First Symposium was held in 1978 at Jurmala near the coast of Riga Bay. The primary reasons for initiating this series of Symposia were to dissemi nate present knowledge, to promote interchange of ideas, and to stimulate addi tional studies on the development of composite materials between the U. S. and USSR. Both countries have a vested interest in developing the capability to assess and utilize the attractive mechanical properties of composites so that they can be tailor-made to meet specific design requirements. Despite the in creasing number of published papers and articles, there is no communication more effective than on a person-to-person basis. It is with this objective in mind that a small group of engineers and scientists from the U. S. and USSR have planned to meet every two years to report recent progress on composite material research. The size of this group is approximately sixty (60) participants. The presentation involves about forty (40) technical papers which are published in volume.
Fracture Mechanics
Author: Chin-Teh Sun
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Publisher: Academic Press
ISBN: 0123850010
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
From a leading expert in fracture mechanics, this text provides new approaches and new applications to advance the understanding of crack formation and propagation.
Practical Fracture Mechanics in Design
Author: Arun Shukla
Publisher: CRC Press
ISBN: 084933893X
Category : Science
Languages : en
Pages : 550
Book Description
Theoretical treatments of fracture mechanics abound in the literature. Among the first books to address this vital topic from an applied standpoint was the first edition of Practical Fracture Mechanics in Design. Completely updated and expanded to reflect recent developments in the field, the second edition of this valuable reference concisely revi
Publisher: CRC Press
ISBN: 084933893X
Category : Science
Languages : en
Pages : 550
Book Description
Theoretical treatments of fracture mechanics abound in the literature. Among the first books to address this vital topic from an applied standpoint was the first edition of Practical Fracture Mechanics in Design. Completely updated and expanded to reflect recent developments in the field, the second edition of this valuable reference concisely revi
Fracture micromechanics of polymer materials
Author: V.S. Kuksenko
Publisher: Springer Science & Business Media
ISBN: 9401715971
Category : Science
Languages : en
Pages : 319
Book Description
Within the last two decades fracture theory has been one of the most rapidly advancing fields of continuous media mechanics. Noteworthy suc cess has been achieved in linear fracture mechanics where the propagation of the macrocrack in elastic materials is under study. However, fracture of materials is by no means a simple process since it involves fracture of structural elements ranging from atomic sizes to macrocracks. To obtain all information about how and why materials fail, all stages of the process must be studied. For a long time both mechanical engineers and physicists have been concerned with the problem of the fracture of solids. Unfortunately, most of their work has been independent of the others. To solve the problem not only requires the minds and work of mechanical engineers and physicists but chemists and other specialists must be consulted as well. In this book we will consider some conclusions of the "physical" and "mechanical" schools acquired by the A. F. Joffe Physics-Technical Institute of the USSR Academy of Sciences in Leningrad and the Institute of Polymer Mechanics of Latvian SSR Academy of Sciences in Riga. The methods for studying the phenomena of fracture applied at both Institutes are different yet complimentary to one another; the materials tested are also sometimes different.
Publisher: Springer Science & Business Media
ISBN: 9401715971
Category : Science
Languages : en
Pages : 319
Book Description
Within the last two decades fracture theory has been one of the most rapidly advancing fields of continuous media mechanics. Noteworthy suc cess has been achieved in linear fracture mechanics where the propagation of the macrocrack in elastic materials is under study. However, fracture of materials is by no means a simple process since it involves fracture of structural elements ranging from atomic sizes to macrocracks. To obtain all information about how and why materials fail, all stages of the process must be studied. For a long time both mechanical engineers and physicists have been concerned with the problem of the fracture of solids. Unfortunately, most of their work has been independent of the others. To solve the problem not only requires the minds and work of mechanical engineers and physicists but chemists and other specialists must be consulted as well. In this book we will consider some conclusions of the "physical" and "mechanical" schools acquired by the A. F. Joffe Physics-Technical Institute of the USSR Academy of Sciences in Leningrad and the Institute of Polymer Mechanics of Latvian SSR Academy of Sciences in Riga. The methods for studying the phenomena of fracture applied at both Institutes are different yet complimentary to one another; the materials tested are also sometimes different.
Multiscale Modelling of Damage and Fracture Processes in Composite Materials
Author: Tomasz Sadowski
Publisher: Springer Science & Business Media
ISBN: 3211381023
Category : Science
Languages : en
Pages : 315
Book Description
This book explores damage growth and fracture processes in cementitious, ceramic, polymer and metal matrix composites, integrating properties like stiffness and strength with observation at below macroscopic scale. Advances in multiscale modelling and analysis pertain directly to materials which either have a range of relevant microstructural scales, like metals, or do not have a well-defined microstructure, like cementitious or ceramic composites.
Publisher: Springer Science & Business Media
ISBN: 3211381023
Category : Science
Languages : en
Pages : 315
Book Description
This book explores damage growth and fracture processes in cementitious, ceramic, polymer and metal matrix composites, integrating properties like stiffness and strength with observation at below macroscopic scale. Advances in multiscale modelling and analysis pertain directly to materials which either have a range of relevant microstructural scales, like metals, or do not have a well-defined microstructure, like cementitious or ceramic composites.