Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor PDF Author: C. B. Davis
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code's calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor PDF Author: C. B. Davis
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code's calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor

Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid that are not currently represented with internal code models, including axial and radial heat conduction in the fluid and subchannel mixing. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor. An evaluation was also performed to determine if the existing centrifugal pump model could be used to simulate the performance of electromagnetic pumps.

RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors

RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) - are added to transfer decay heat from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP's Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet temperature. The peak cladding, hot pool, cold pool and reactor inlet temperatures were calculated during LOFC. The results indicate that there are two phases during LOFC transient - the initial thermal equilibration phase and the long term decay heat removal phase. The initial thermal equilibration phase occurs over a few hundred seconds, as the system adjusts from forced circulation to natural circulation flow. Subsequently, during long-term heat removal phase all temperatures evolve very slowly due to the large thermal inertia of the primary and buffer pool systems. The results clearly show that passive safety PRACS can effectively transfer decay heat from the primary system to the buffer pool by natural circulation. The DRACS system in turn can effectively transfer the decay heat to the environment.

Development and Application of RELAP5-3D.

Development and Application of RELAP5-3D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The SCDAP-3D computer code (Coryell 2001) has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the analysis of severe reactor accidents. A prominent feature of SCDAP-3D relative to other versions of the code is its linkage to the state-of-the-art thermal/hydraulic analysis capabilities of RELAP5-3D. Enhancements to the severe accident models include the ability to simulate high burnup and alternative fuel, as well as modifications to support advanced reactor analyses, such as those described by the Department of Energy's Generation IV (GenIV) initiative. Initial development of SCDAP-3D is complete and two widely varying but successful applications of the code are summarized. The first application is to large break loss of coolant accident analysis performed for a reactor with alternative fuel, and the second is a calculation of International Standard Problem 45 (ISP-45) or the QUENCH 6 experiment.

Relap5-3d Model Validation and Benchmark Exercises for Advanced Gas Cooled Reactor Application

Relap5-3d Model Validation and Benchmark Exercises for Advanced Gas Cooled Reactor Application PDF Author: Eugene James Thomas Moore
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High-temperature gas-cooled reactors (HTGR) are passively safe, efficient, and economical solutions to the world's energy crisis. HTGRs are capable of generating high temperatures during normal operation, introducing design challenges related to material selection and reactor safety. Understanding heat transfer and fluid flow phenomena during normal and transient operation of HTGRs is essential to ensure the adequacy of safety features, such as the reactor cavity cooling system (RCCS). Modeling abilities of system analysis codes, used to develop an understanding of light water reactor phenomenology, need to be proven for HTGRs. RELAP5-3D v2.3.6 is used to generate two reactor plant models for a code-to-code and a code-to-experiment benchmark problem. The code-to-code benchmark problem models the Russian VGM reactor for pressurized and depressurized pressure vessel conditions. Temperature profiles corresponding to each condition are assigned to the pressure vessel heat structure. Experiment objectives are to calculate total thermal energy transferred to the RCCS for both cases. Qualitatively, RELAP5-3D's predictions agree closely with those of other system codes such as MORECA and Thermix. RELAP5-3D predicts that 80% of thermal energy transferred to the RCCS is radiant. Quantitatively, RELAP5-3D computes slightly higher radiant and convective heat transfer rates than other system analysis codes. Differences in convective heat transfer rate arise from the type and usage of convection models. Differences in radiant heat transfer stem from the calculation of radiation shape factors, also known as view or configuration factors. A MATLAB script employs a set of radiation shape factor correlations and applies them to the RELAP5-3D model. This same script is used to generate radiation shape factors for the code-to-experiment benchmark problem, which uses the Japanese HTTR reactor to determine temperature along the outside of the pressure vessel. Despite lacking information on material properties, emissivities, and initial conditions, RELAP5-3D temperature trend predictions closely match those of other system codes. Compared to experimental measurements, however, RELAP5-3D cannot capture fluid behavior above the pressure vessel. While qualitatively agreeing over the pressure vessel body, RELAP5-3D predictions diverge from experimental measurements elsewhere. This difference reflects the limitations of using a system analysis code where computational fluid dynamics codes are better suited.

Assessment of RELAP5-3D Multi-dimensional Component Model Using Data from LOFT Test L2-5

Assessment of RELAP5-3D Multi-dimensional Component Model Using Data from LOFT Test L2-5 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Get Book Here

Book Description
The capability of the RELAP5-3D computer code to perform multi-dimensional analysis of a pressurized water reactor (PWR) was assessed using data from the Loss-of-Fluid Test (LOFT) L2-5 experiment. The LOFT facility was a 50 MW PWR that was designed to simulate the response of a commercial PWR during a loss-of-coolant accident (LOCA). Test L2-5 simulated a 200% double-ended cold leg break with an immediate primary coolant pump trip. A three-dimensional model of the LOFT reactor vessel was developed. Calculations of the LOFT L21-5 experiment were performed using the RELAP5-3D computer code. The calculations simulated the blowdown, refill, and reflood portions of the transient. The calculated thermal-hydraulic response of the primary coolant system was generally in reasonable agreement with the test. The calculated results were also generally as good as or better than those obtained previously with RELAP5/MOD3.

Assessment of RELAP5-3D{copyright} Using Data from Two-dimensional RPI Flow Tests

Assessment of RELAP5-3D{copyright} Using Data from Two-dimensional RPI Flow Tests PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
The capability of the RELAP5-3D{copyright} computer code to perform multi-dimensional thermal-hydraulic analysis was assessed using data from steady-state flow tests conducted at Rensselaer Polytechnic Institute (RPI). The RPI data were taken in a two-dimensional test section in a low-pressure air/water loop. The test section consisted of a thin vertical channel that simulated a two-dimensional slice through the core of a pressurized water reactor. Single-phase and two-phase flows were supplied to the test section in an asymmetric manner to generate a two-dimensional flow field. A traversing gamma densitometer was used to measure void fraction at many locations in the test section. High speed photographs provided information on the flow patterns and flow regimes. The RPI test section was modeled using the multi-dimensional component in RELAP5-3D Version BF06. Calculations of three RPI experiments were performed. The flow regimes predicted by the base code were in poor agreement with those observed in the tests. The two-phase regions were observed to be in the bubbly and slug flow regimes in the test. However, nearly all of the junctions in the horizontal direction were calculated to be in the stratified flow regime because of the relatively low velocities in that direction. As a result, the void fraction predictions were also in poor agreement with the measured values. Significantly improved results were obtained in sensitivity calculations with a modified version of the code that prevented the horizontal junctions from entering the stratified flow regime. These results indicate that the code's logic in the determination of flow regimes in a multi-dimensional component must be improved. The results of the sensitivity calculations also indicate that RELAP5-3D will provide a significant multi-dimensional hydraulic analysis capability once the flow regime prediction is improved.

Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy's Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

Assessment of the RELAP5 Multi-dimensional Component Model Using Data from LOFT Test L2-5

Assessment of the RELAP5 Multi-dimensional Component Model Using Data from LOFT Test L2-5 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 50

Get Book Here

Book Description
The capability of the RELAP5-3D computer code to perform multi-dimensional analysis of a pressurized water reactor (PWR) was assessed using data from the LOFT L2-5 experiment. The LOFT facility was a 50 MW PWR that was designed to simulate the response of a commercial PWR during a loss-of-coolant accident. Test L2-5 simulated a 200% double-ended cold leg break with an immediate primary coolant pump trip. A three-dimensional model of the LOFT reactor vessel was developed. Calculations of the LOFT L2-5 experiment were performed using the RELAP5-3D Version BF02 computer code. The calculated thermal-hydraulic responses of the LOFT primary and secondary coolant systems were generally in reasonable agreement with the test. The calculated results were also generally as good as or better than those obtained previously with RELAP/MOD3.

RELAP5-3D Code Validation for RBMK Phenomena

RELAP5-3D Code Validation for RBMK Phenomena PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.