Author: Reyhan Baktur
Publisher: Artech House
ISBN: 1630817864
Category : Technology & Engineering
Languages : en
Pages : 240
Book Description
A CubeSat is a miniaturized modular satellite that can be constructed from off-the-shelf components. With advancements in digital signal processing, power electronics, and packaging technology, it is feasible to fit science instruments and communication devices that were traditionally carried on larger satellites on CubeSat consolations. This not only reduces mission cost, repair, risk, but also provides more precise and real-time science data. Their low cost and versatility allow for CubeSats to be used to test technologies that are planned to use on larger satellites, to collect point-to-point data in space when launched as CubeSat constellations, or to monitor health of larger spacecrafts. This comprehensive reference explores CubeSat standards, launching methods, and detailed design guidelines for antennas specially made for CubeSat applications. Deployed CubeSat antennas, such as low gain antennas, high gain wire-based antennas, and horn and dish antennas as they relate to the technology are explored. Conformal CubeSat Antennas, including those that are independent of CubeSats and those integrated in CubeSat solar panels, are discussed. An antenna design guideline is provided to demonstrate the basics of a CubeSat link budget, which is transitionally published in signal and system community. Written by an expert in the field, this book enables readers to read antenna specifics when choosing communication front-end.
Antenna Design for CubeSats
Author: Reyhan Baktur
Publisher: Artech House
ISBN: 1630817864
Category : Technology & Engineering
Languages : en
Pages : 240
Book Description
A CubeSat is a miniaturized modular satellite that can be constructed from off-the-shelf components. With advancements in digital signal processing, power electronics, and packaging technology, it is feasible to fit science instruments and communication devices that were traditionally carried on larger satellites on CubeSat consolations. This not only reduces mission cost, repair, risk, but also provides more precise and real-time science data. Their low cost and versatility allow for CubeSats to be used to test technologies that are planned to use on larger satellites, to collect point-to-point data in space when launched as CubeSat constellations, or to monitor health of larger spacecrafts. This comprehensive reference explores CubeSat standards, launching methods, and detailed design guidelines for antennas specially made for CubeSat applications. Deployed CubeSat antennas, such as low gain antennas, high gain wire-based antennas, and horn and dish antennas as they relate to the technology are explored. Conformal CubeSat Antennas, including those that are independent of CubeSats and those integrated in CubeSat solar panels, are discussed. An antenna design guideline is provided to demonstrate the basics of a CubeSat link budget, which is transitionally published in signal and system community. Written by an expert in the field, this book enables readers to read antenna specifics when choosing communication front-end.
Publisher: Artech House
ISBN: 1630817864
Category : Technology & Engineering
Languages : en
Pages : 240
Book Description
A CubeSat is a miniaturized modular satellite that can be constructed from off-the-shelf components. With advancements in digital signal processing, power electronics, and packaging technology, it is feasible to fit science instruments and communication devices that were traditionally carried on larger satellites on CubeSat consolations. This not only reduces mission cost, repair, risk, but also provides more precise and real-time science data. Their low cost and versatility allow for CubeSats to be used to test technologies that are planned to use on larger satellites, to collect point-to-point data in space when launched as CubeSat constellations, or to monitor health of larger spacecrafts. This comprehensive reference explores CubeSat standards, launching methods, and detailed design guidelines for antennas specially made for CubeSat applications. Deployed CubeSat antennas, such as low gain antennas, high gain wire-based antennas, and horn and dish antennas as they relate to the technology are explored. Conformal CubeSat Antennas, including those that are independent of CubeSats and those integrated in CubeSat solar panels, are discussed. An antenna design guideline is provided to demonstrate the basics of a CubeSat link budget, which is transitionally published in signal and system community. Written by an expert in the field, this book enables readers to read antenna specifics when choosing communication front-end.
CubeSat Antenna Design
Author: Nacer Chahat
Publisher: John Wiley & Sons
ISBN: 111969258X
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats—nanosatellites built to standard dimensions of 10cm x 10 cm x cm—are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective. This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume: Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication Helps readers learn how to develop antennas for future CubeSat missions Provides key information on the effect of space environment on antennas to inform design steps Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.
Publisher: John Wiley & Sons
ISBN: 111969258X
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats—nanosatellites built to standard dimensions of 10cm x 10 cm x cm—are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective. This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume: Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication Helps readers learn how to develop antennas for future CubeSat missions Provides key information on the effect of space environment on antennas to inform design steps Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.
CubeSat Handbook
Author: Chantal Cappelletti
Publisher: Academic Press
ISBN: 012817885X
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
CubeSat Handbook: From Mission Design to Operations is the first book solely devoted to the design, manufacturing, and in-orbit operations of CubeSats. Beginning with an historical overview from CubeSat co-inventors Robert Twiggs and Jordi Puig-Suari, the book is divided into 6 parts with contributions from international experts in the area of small satellites and CubeSats. It covers topics such as standard interfaces, on-board & ground software, industry standards in terms of control algorithms and sub-systems, systems engineering, standards for AITV (assembly, integration, testing and validation) activities, and launch regulations. This comprehensive resource provides all the information needed for engineers and developers in industry and academia to successfully design and launch a CubeSat mission. - Provides an overview on all aspects that a CubeSat developer needs to analyze during mission design and its realization - Features practical examples on how to design and deal with possible issues during a CubeSat mission - Covers new developments and technologies, including ThinSats and PocketQubeSats
Publisher: Academic Press
ISBN: 012817885X
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
CubeSat Handbook: From Mission Design to Operations is the first book solely devoted to the design, manufacturing, and in-orbit operations of CubeSats. Beginning with an historical overview from CubeSat co-inventors Robert Twiggs and Jordi Puig-Suari, the book is divided into 6 parts with contributions from international experts in the area of small satellites and CubeSats. It covers topics such as standard interfaces, on-board & ground software, industry standards in terms of control algorithms and sub-systems, systems engineering, standards for AITV (assembly, integration, testing and validation) activities, and launch regulations. This comprehensive resource provides all the information needed for engineers and developers in industry and academia to successfully design and launch a CubeSat mission. - Provides an overview on all aspects that a CubeSat developer needs to analyze during mission design and its realization - Features practical examples on how to design and deal with possible issues during a CubeSat mission - Covers new developments and technologies, including ThinSats and PocketQubeSats
Antenna Design for CubeSats
Author: Reyhan Baktur
Publisher: Artech House Publishers
ISBN: 9781630817855
Category :
Languages : en
Pages : 240
Book Description
A CubeSat is a miniaturized modular satellite that can be constructed from off-the-shelf components. With advancements in digital signal processing, power electronics, and packaging technology, it is feasible to fit science instruments and communication devices that were traditionally carried on larger satellites on CubeSat consolations. This not only reduces mission cost, repair, risk, but also provides more precise and real-time science data. Their low cost and versatility allow for CubeSats to be used to test technologies that are planned to use on larger satellites, to collect point-to-point data in space when launched as CubeSat constellations, or to monitor health of larger spacecrafts. This comprehensive reference explores CubeSat standards, launching methods, and detailed design guidelines for antennas specially made for CubeSat applications. Deployed CubeSat antennas, such as low gain antennas, high gain wire-based antennas, and horn and dish antennas as they relate to the technology are explored. Conformal CubeSat Antennas, including those that are independent of CubeSats and those integrated in CubeSat solar panels, are discussed. An antenna design guideline is provided to demonstrate the basics of a CubeSat link budget, which is transitionally published in signal and system community. Written by an expert in the field, this book enables readers to read antenna specifics when choosing communication front-end.
Publisher: Artech House Publishers
ISBN: 9781630817855
Category :
Languages : en
Pages : 240
Book Description
A CubeSat is a miniaturized modular satellite that can be constructed from off-the-shelf components. With advancements in digital signal processing, power electronics, and packaging technology, it is feasible to fit science instruments and communication devices that were traditionally carried on larger satellites on CubeSat consolations. This not only reduces mission cost, repair, risk, but also provides more precise and real-time science data. Their low cost and versatility allow for CubeSats to be used to test technologies that are planned to use on larger satellites, to collect point-to-point data in space when launched as CubeSat constellations, or to monitor health of larger spacecrafts. This comprehensive reference explores CubeSat standards, launching methods, and detailed design guidelines for antennas specially made for CubeSat applications. Deployed CubeSat antennas, such as low gain antennas, high gain wire-based antennas, and horn and dish antennas as they relate to the technology are explored. Conformal CubeSat Antennas, including those that are independent of CubeSats and those integrated in CubeSat solar panels, are discussed. An antenna design guideline is provided to demonstrate the basics of a CubeSat link budget, which is transitionally published in signal and system community. Written by an expert in the field, this book enables readers to read antenna specifics when choosing communication front-end.
Handbook of Small Satellites
Author: Joseph N. Pelton
Publisher: Springer
ISBN: 9783030363079
Category : Science
Languages : en
Pages : 0
Book Description
In the past decade, the field of small satellites has expanded the space industry in a powerful way. Hundreds, indeed thousands, of these innovative and highly cost-efficient satellites are now being launched from Earth to establish low-cost space systems. These smallsats are engaged in experiments and prototype testing, communications services, data relay, internet access, remote sensing, defense and security related services, and more. Some of these systems are quite small and are simple student experiments, while others in commercial constellations are employing state-of-the-art technologies to deliver fast and accurate services. This handbook provides a comprehensive overview of this exciting new field. It covers the technology, applications and services, design and manufacture, launch arrangements, ground systems, and economic and regulatory arrangements surrounding small satellites. The diversity of approach in recent years has allowed for rapid innovation and economic breakthroughs to proceed at a pace that seems only to be speeding up. In this reference work, readers will find information pertaining to all aspects of the small satellite industry, written by a host of international experts in the field.
Publisher: Springer
ISBN: 9783030363079
Category : Science
Languages : en
Pages : 0
Book Description
In the past decade, the field of small satellites has expanded the space industry in a powerful way. Hundreds, indeed thousands, of these innovative and highly cost-efficient satellites are now being launched from Earth to establish low-cost space systems. These smallsats are engaged in experiments and prototype testing, communications services, data relay, internet access, remote sensing, defense and security related services, and more. Some of these systems are quite small and are simple student experiments, while others in commercial constellations are employing state-of-the-art technologies to deliver fast and accurate services. This handbook provides a comprehensive overview of this exciting new field. It covers the technology, applications and services, design and manufacture, launch arrangements, ground systems, and economic and regulatory arrangements surrounding small satellites. The diversity of approach in recent years has allowed for rapid innovation and economic breakthroughs to proceed at a pace that seems only to be speeding up. In this reference work, readers will find information pertaining to all aspects of the small satellite industry, written by a host of international experts in the field.
Achieving Science with CubeSats
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030944263X
Category : Science
Languages : en
Pages : 131
Book Description
Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.
Publisher: National Academies Press
ISBN: 030944263X
Category : Science
Languages : en
Pages : 131
Book Description
Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.
Spacecraft Formation Flying
Author: Kyle Alfriend
Publisher: Elsevier
ISBN: 0080559654
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. - The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field - Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits - Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation
Publisher: Elsevier
ISBN: 0080559654
Category : Technology & Engineering
Languages : en
Pages : 403
Book Description
Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects—large unmanned and manned satellites (including the present International Space Station)—can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. - The first book dedicated to spacecraft formation flying, written by leading researchers and professors in the field - Develops the theory from an astrodynamical viewpoint, emphasizing modeling, control and navigation of formation flying satellites on Earth orbits - Examples used to illustrate the main developments, with a sample simulation of a formation flying mission included to illustrate high fidelity modeling, control and relative navigation
Attitude Stabilization for CubeSat
Author: Mohammed Chessab Mahdi
Publisher: Cambridge Scholars Publishing
ISBN: 152752163X
Category : Technology & Engineering
Languages : en
Pages : 190
Book Description
This book explores CubeSat technology, and develops a nonlinear mathematical model of a spacecraft with the assumption that the satellite is a rigid body. It places emphasis on the CubeSat subsystem, orbit dynamics and perturbations, the satellite attitude dynamic and modeling, and components of attitude determination and the control subsystem. The book focuses on the attitude stabilization methods of spacecraft, and presents gravity gradient stabilization, aerodynamic stabilization, and permanent magnets stabilization as passive stabilization methods, and spin stabilization and three axis stabilization as active stabilization methods. It also discusses the need to develop a control system design, and describes the design of three controller configurations, namely the Proportional–Integral–Derivative Controller (PID), the Linear Quadratic Regulator (LQR), and the Fuzzy Logic Controller (FLC) and how they can be used to design the attitude control of CubeSat three-axis stabilization. Furthermore, it presents the design of a suitable attitude stabilization system by combining gravity gradient stabilization with magnetic torquing, and the design of magnetic coils which can be added in order to improve the accuracy of attitude stabilization. The book then investigates, simulates, and compares possible controller configurations that can be used to control the currents of magnetic coils when magnetic coils behave as the actuator of the system.
Publisher: Cambridge Scholars Publishing
ISBN: 152752163X
Category : Technology & Engineering
Languages : en
Pages : 190
Book Description
This book explores CubeSat technology, and develops a nonlinear mathematical model of a spacecraft with the assumption that the satellite is a rigid body. It places emphasis on the CubeSat subsystem, orbit dynamics and perturbations, the satellite attitude dynamic and modeling, and components of attitude determination and the control subsystem. The book focuses on the attitude stabilization methods of spacecraft, and presents gravity gradient stabilization, aerodynamic stabilization, and permanent magnets stabilization as passive stabilization methods, and spin stabilization and three axis stabilization as active stabilization methods. It also discusses the need to develop a control system design, and describes the design of three controller configurations, namely the Proportional–Integral–Derivative Controller (PID), the Linear Quadratic Regulator (LQR), and the Fuzzy Logic Controller (FLC) and how they can be used to design the attitude control of CubeSat three-axis stabilization. Furthermore, it presents the design of a suitable attitude stabilization system by combining gravity gradient stabilization with magnetic torquing, and the design of magnetic coils which can be added in order to improve the accuracy of attitude stabilization. The book then investigates, simulates, and compares possible controller configurations that can be used to control the currents of magnetic coils when magnetic coils behave as the actuator of the system.
Multifunctional Antennas and Arrays for Wireless Communication Systems
Author: Satish K. Sharma
Publisher: John Wiley & Sons
ISBN: 1119535050
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
MULTIFUNCTIONAL ANTENNAS AND ARRAYS FOR WIRELESS COMMUNICATION SYSTEMS Offers an up-to-date discussion of multifunctional antennas and arrays for wireless communication systems Multifunctional Antennas and Arrays for Wireless Communication Systems is a comprehensive reference on state-of-the-art reconfigurable antennas and 4G/5G communication antennas. The book gives a unique perspective while giving a comprehensive overview of the following topics: Frequency reconfigurable antennas Pattern reconfigurable antennas Polarization reconfigurable antennas Reconfigurable antennas using Liquid Metal, Piezoelectric, and RF MEMS MIMO and 4G/5G wireless communication antennas Metamaterials and metasurfaces in reconfigurable antennas Multifunctional antennas for user equipments (UEs) Defense related antennas and applications Flat panel phased array antennas The book is a valuable resource for the practicing engineer as well as for those within the research field. As wireless communications continuously evolves, more and more functionally will be required, and thus multifunctional antennas and RF systems will be necessary. These multifunctional antennas will require a degree of reconfigurability, and this book discusses various methods which enable this. The main topics of frequency, pattern, and polarization reconfigurability is first discussed. Methods utilizing unique materials and devices, both real and artificial are discussed. The book also delves into 4G/5G antennas as it relates to MIMO, and millimeter-wave phased arrays. Finally, there is a section on defense related multifunctional RF antenna systems.
Publisher: John Wiley & Sons
ISBN: 1119535050
Category : Technology & Engineering
Languages : en
Pages : 466
Book Description
MULTIFUNCTIONAL ANTENNAS AND ARRAYS FOR WIRELESS COMMUNICATION SYSTEMS Offers an up-to-date discussion of multifunctional antennas and arrays for wireless communication systems Multifunctional Antennas and Arrays for Wireless Communication Systems is a comprehensive reference on state-of-the-art reconfigurable antennas and 4G/5G communication antennas. The book gives a unique perspective while giving a comprehensive overview of the following topics: Frequency reconfigurable antennas Pattern reconfigurable antennas Polarization reconfigurable antennas Reconfigurable antennas using Liquid Metal, Piezoelectric, and RF MEMS MIMO and 4G/5G wireless communication antennas Metamaterials and metasurfaces in reconfigurable antennas Multifunctional antennas for user equipments (UEs) Defense related antennas and applications Flat panel phased array antennas The book is a valuable resource for the practicing engineer as well as for those within the research field. As wireless communications continuously evolves, more and more functionally will be required, and thus multifunctional antennas and RF systems will be necessary. These multifunctional antennas will require a degree of reconfigurability, and this book discusses various methods which enable this. The main topics of frequency, pattern, and polarization reconfigurability is first discussed. Methods utilizing unique materials and devices, both real and artificial are discussed. The book also delves into 4G/5G antennas as it relates to MIMO, and millimeter-wave phased arrays. Finally, there is a section on defense related multifunctional RF antenna systems.
Introduction to Antennas and RF Propagation Analysis
Author: Dean James Friesen
Publisher: Artech House
ISBN: 1630819298
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
This practical text gives engineers and technicians at all levels an easy-to-follow entry point into the subject of RF/EM wave propagation and antennas. While aimed primarily at those who are entering the field or transitioning from a related field, the book also helps experienced professionals obtain a more refined understanding of the various methodologies and processes in this area. The book covers the essentials, practices, technical details, and considerations needed to help a team of engineers design, install, and/or predict the technical performance of a new (or even existing) one-way, two-antenna (long radiating distance) RF communication system. The chapters are organized logically to walk you step by step through the application processes, showing you proven methods to bring about top performance, while also helping you factor in unanticipated variances, including those caused by the earth itself, earth’s gaseous atmosphere, rain, snow, hail, ice, ionospheric signal attenuation, and EM waves. This kind of understanding and consideration saves time, money, and much frustration in a project. With this book in hand, you will better understand RF/EM wave propagation and the technical vernacular used to describe it; become familiar with the various processes and considerations in analyzing, designing, and predicting the performance of new and existing antenna RF communications systems; and more confidently approach problem solving and possible solutions for reducing signal interference and loss. The chapter contents, while not sparing the reader exposure to radiated RF system design and analysis terminology, are written in a relaxed, conversational tone and easy-to-understand manner, making this a perfect learning tool for those entering or transitioning to this field, as well as an excellent supplement or foundational text for an instructional course. The book’s logically organized and easy-to-access chapter structure also facilitates its use as a bench reference for quick lookup or review.
Publisher: Artech House
ISBN: 1630819298
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
This practical text gives engineers and technicians at all levels an easy-to-follow entry point into the subject of RF/EM wave propagation and antennas. While aimed primarily at those who are entering the field or transitioning from a related field, the book also helps experienced professionals obtain a more refined understanding of the various methodologies and processes in this area. The book covers the essentials, practices, technical details, and considerations needed to help a team of engineers design, install, and/or predict the technical performance of a new (or even existing) one-way, two-antenna (long radiating distance) RF communication system. The chapters are organized logically to walk you step by step through the application processes, showing you proven methods to bring about top performance, while also helping you factor in unanticipated variances, including those caused by the earth itself, earth’s gaseous atmosphere, rain, snow, hail, ice, ionospheric signal attenuation, and EM waves. This kind of understanding and consideration saves time, money, and much frustration in a project. With this book in hand, you will better understand RF/EM wave propagation and the technical vernacular used to describe it; become familiar with the various processes and considerations in analyzing, designing, and predicting the performance of new and existing antenna RF communications systems; and more confidently approach problem solving and possible solutions for reducing signal interference and loss. The chapter contents, while not sparing the reader exposure to radiated RF system design and analysis terminology, are written in a relaxed, conversational tone and easy-to-understand manner, making this a perfect learning tool for those entering or transitioning to this field, as well as an excellent supplement or foundational text for an instructional course. The book’s logically organized and easy-to-access chapter structure also facilitates its use as a bench reference for quick lookup or review.