Mixed Models

Mixed Models PDF Author: Eugene Demidenko
Publisher: John Wiley & Sons
ISBN: 1118091574
Category : Mathematics
Languages : en
Pages : 768

Get Book Here

Book Description
Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.

Mixed Models

Mixed Models PDF Author: Eugene Demidenko
Publisher: John Wiley & Sons
ISBN: 1118091574
Category : Mathematics
Languages : en
Pages : 768

Get Book Here

Book Description
Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.

Generalized Linear Mixed Models

Generalized Linear Mixed Models PDF Author: Charles E. McCulloch
Publisher: IMS
ISBN: 9780940600546
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description
Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models

Linear Mixed Models

Linear Mixed Models PDF Author: Brady T. West
Publisher: CRC Press
ISBN: 1420010433
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials

Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials PDF Author: Toshiro Tango
Publisher: CRC Press
ISBN: 1498747906
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Repeated Measures Design with Generalized Linear Mixed Models for Randomized Controlled Trials is the first book focused on the application of generalized linear mixed models and its related models in the statistical design and analysis of repeated measures from randomized controlled trials. The author introduces a new repeated measures design called S:T design combined with mixed models as a practical and useful framework of parallel group RCT design because of easy handling of missing data and sample size reduction. The book emphasizes practical, rather than theoretical, aspects of statistical analyses and the interpretation of results. It includes chapters in which the author describes some old-fashioned analysis designs that have been in the literature and compares the results with those obtained from the corresponding mixed models. The book will be of interest to biostatisticians, researchers, and graduate students in the medical and health sciences who are involved in clinical trials. Author Website:Data sets and programs used in the book are available at http://www.medstat.jp/downloadrepeatedcrc.html

Introducing Anova and Ancova

Introducing Anova and Ancova PDF Author: Andrew Rutherford
Publisher: SAGE
ISBN: 1412933358
Category : Social Science
Languages : en
Pages : 193

Get Book Here

Book Description
Traditional approaches to ANOVA and ANCOVA are now being replaced by a General Linear Modeling (GLM) approach. This book begins with a brief history of the separate development of ANOVA and regression analyses and demonstrates how both analysis forms are subsumed by the General Linear Model. A simple single independent factor ANOVA is analysed first in conventional terms and then again in GLM terms to illustrate the two approaches. The text then goes on to cover the main designs, both independent and related ANOVA and ANCOVA, single and multi-factor designs. The conventional statistical assumptions underlying ANOVA and ANCOVA are detailed and given expression in GLM terms. Alternatives to traditional ANCOVA are also presented when circumstances in which certain assumptions have not been met. The book also covers other important issues in the use of these approaches such as power analysis, optimal experimental designs, normality violations and robust methods, error rate and multiple comparison procedures and the role of omnibus F-tests.

SAS for Mixed Models

SAS for Mixed Models PDF Author: Walter W. Stroup
Publisher: SAS Institute
ISBN: 163526152X
Category : Computers
Languages : en
Pages : 823

Get Book Here

Book Description
Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.

The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation

The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation PDF Author: Bruce B. Frey
Publisher: SAGE Publications
ISBN: 1506326145
Category : Education
Languages : en
Pages : 1996

Get Book Here

Book Description
This encyclopedia is the first major reference guide for students new to the field, covering traditional areas while pointing the way to future developments.

Asymptotic Analysis of Mixed Effects Models

Asymptotic Analysis of Mixed Effects Models PDF Author: Jiming Jiang
Publisher: CRC Press
ISBN: 1498700462
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.

Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists PDF Author: Marc Kéry
Publisher: Academic Press
ISBN: 0123786061
Category : Science
Languages : en
Pages : 321

Get Book Here

Book Description
Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. - Introduction to the essential theories of key models used by ecologists - Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS - Provides every detail of R and WinBUGS code required to conduct all analyses - Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)

Mixed-Effects Models in S and S-PLUS

Mixed-Effects Models in S and S-PLUS PDF Author: José C. Pinheiro
Publisher: Springer Science & Business Media
ISBN: 1441903178
Category : Computers
Languages : en
Pages : 538

Get Book Here

Book Description
R, linear models, random, fixed, data, analysis, fit.