Algorithmic Graph Theory and Perfect Graphs

Algorithmic Graph Theory and Perfect Graphs PDF Author: Martin Charles Golumbic
Publisher: Elsevier
ISBN: 1483271978
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
Algorithmic Graph Theory and Perfect Graphs provides an introduction to graph theory through practical problems. This book presents the mathematical and algorithmic properties of special classes of perfect graphs. Organized into 12 chapters, this book begins with an overview of the graph theoretic notions and the algorithmic design. This text then examines the complexity analysis of computer algorithm and explains the differences between computability and computational complexity. Other chapters consider the parameters and properties of a perfect graph and explore the class of perfect graphs known as comparability graph or transitively orientable graphs. This book discusses as well the two characterizations of triangulated graphs, one algorithmic and the other graph theoretic. The final chapter deals with the method of performing Gaussian elimination on a sparse matrix wherein an arbitrary choice of pivots may result in the filling of some zero positions with nonzeros. This book is a valuable resource for mathematicians and computer scientists.

Submodular Functions and Electrical Networks

Submodular Functions and Electrical Networks PDF Author: H. Narayanan
Publisher: Elsevier
ISBN: 0444825231
Category : Computers
Languages : en
Pages : 682

Get Book Here

Book Description
There is a strong case for electrical network topologists and submodular function theorists being aware of each other's fields. Presenting a topological approach to electrical network theory, this book demonstrates the strong links that exist between submodular functions and electrical networks. The book contains: . a detailed discussion of graphs, matroids, vector spaces and the algebra of generalized minors, relevant to network analysis (particularly to the construction of efficient circuit simulators) . a detailed discussion of submodular function theory in its own right; topics covered include, various operations, dualization, convolution and Dilworth truncation as well as the related notions of prinicpal partition and principal lattice of partitions. In order to make the book useful to a wide audience, the material on electrical networks and that on submodular functions is presented independently of each other. The hybrid rank problem, the bridge between (topological) electrical network theory and submodular functions, is covered in the final chapter. The emphasis in the book is on low complexity algorithms, particularly based on bipartite graphs. The book is intended for self-study and is recommended to designers of VLSI algorithms. More than 300 problems, almost all of them with solutions, are included at the end of each chapter.

Threshold Graphs and Related Topics

Threshold Graphs and Related Topics PDF Author: N.V.R. Mahadev
Publisher: Elsevier
ISBN: 0080543006
Category : Mathematics
Languages : en
Pages : 559

Get Book Here

Book Description
Threshold graphs have a beautiful structure and possess many important mathematical properties. They have applications in many areas including computer science and psychology. Over the last 20 years the interest in threshold graphs has increased significantly, and the subject continues to attract much attention.The book contains many open problems and research ideas which will appeal to graduate students and researchers interested in graph theory. But above all Threshold Graphs and Related Topics provides a valuable source of information for all those working in this field.

Quo Vadis, Graph Theory?

Quo Vadis, Graph Theory? PDF Author: J. Gimbel
Publisher: Elsevier
ISBN: 0080867952
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
Graph Theory (as a recognized discipline) is a relative newcomer to Mathematics. The first formal paper is found in the work of Leonhard Euler in 1736. In recent years the subject has grown so rapidly that in today's literature, graph theory papers abound with new mathematical developments and significant applications.As with any academic field, it is good to step back occasionally and ask Where is all this activity taking us?, What are the outstanding fundamental problems?, What are the next important steps to take?. In short, Quo Vadis, Graph Theory?. The contributors to this volume have together provided a comprehensive reference source for future directions and open questions in the field.

Submodular Functions and Optimization

Submodular Functions and Optimization PDF Author: Satoru Fujishige
Publisher: Elsevier
ISBN: 008046162X
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
It has widely been recognized that submodular functions play essential roles in efficiently solvable combinatorial optimization problems. Since the publication of the 1st edition of this book fifteen years ago, submodular functions have been showing further increasing importance in optimization, combinatorics, discrete mathematics, algorithmic computer science, and algorithmic economics, and there have been made remarkable developments of theory and algorithms in submodular functions. The 2nd edition of the book supplements the 1st edition with a lot of remarks and with new two chapters: "Submodular Function Minimization" and "Discrete Convex Analysis." The present 2nd edition is still a unique book on submodular functions, which is essential to students and researchers interested in combinatorial optimization, discrete mathematics, and discrete algorithms in the fields of mathematics, operations research, computer science, and economics. - Self-contained exposition of the theory of submodular functions - Selected up-to-date materials substantial to future developments - Polyhedral description of Discrete Convex Analysis - Full description of submodular function minimization algorithms - Effective insertion of figures - Useful in applied mathematics, operations research, computer science, and economics

Topics on Domination

Topics on Domination PDF Author: S.T. Hedetniemi
Publisher: Elsevier
ISBN: 008086788X
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
The contributions in this volume are divided into three sections: theoretical, new models and algorithmic. The first section focuses on properties of the standard domination number &ggr;(G), the second section is concerned with new variations on the domination theme, and the third is primarily concerned with finding classes of graphs for which the domination number (and several other domination-related parameters) can be computed in polynomial time.

Recent Results in the Theory of Graph Spectra

Recent Results in the Theory of Graph Spectra PDF Author: D.M. Cvetkovic
Publisher: Elsevier
ISBN: 0080867766
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
The purpose of this volume is to review the results in spectral graph theory which have appeared since 1978.The problem of characterizing graphs with least eigenvalue -2 was one of the original problems of spectral graph theory. The techniques used in the investigation of this problem have continued to be useful in other contexts including forbidden subgraph techniques as well as geometric methods involving root systems. In the meantime, the particular problem giving rise to these methods has been solved almost completely. This is indicated in Chapter 1.The study of various combinatorial objects (including distance regular and distance transitive graphs, association schemes, and block designs) have made use of eigenvalue techniques, usually as a method to show the nonexistence of objects with certain parameters. The basic method is to construct a graph which contains the structure of the combinatorial object and then to use the properties of the eigenvalues of the graph. Methods of this type are given in Chapter 2.Several topics have been included in Chapter 3, including the relationships between the spectrum and automorphism group of a graph, the graph isomorphism and the graph reconstruction problem, spectra of random graphs, and the Shannon capacity problem. Some graph polynomials related to the characteristic polynomial are described in Chapter 4. These include the matching, distance, and permanental polynomials. Applications of the theory of graph spectra to Chemistry and other branches of science are described from a mathematical viewpoint in Chapter 5. The last chapter is devoted to the extension of the theory of graph spectra to infinite graphs.

Discrete Optimization I

Discrete Optimization I PDF Author:
Publisher: Elsevier
ISBN: 0080867677
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
Discrete Optimization I

Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity

Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity PDF Author: J. Nešetril
Publisher: Elsevier
ISBN: 008086791X
Category : Computers
Languages : en
Pages : 411

Get Book Here

Book Description
This volume in the Annals of Discrete Mathematics brings together contributions by renowned researchers in combinatorics, graphs and complexity. The conference on which this book is based was the fourth in a series which began in 1963, which was the first time specialists from East and West were able to come together. The 1990 meeting attracted 170 mathematicians and computer scientists from around the world, so this book represents an international, detailed view of recent research.

The Steiner Tree Problem

The Steiner Tree Problem PDF Author: F.K. Hwang
Publisher: Elsevier
ISBN: 0080867936
Category : Computers
Languages : en
Pages : 353

Get Book Here

Book Description
The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues.This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging.The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole.