Author: G. M. Henkin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112471784
Category : Social Science
Languages : en
Pages : 272
Book Description
Andreotti-Grauert Theory by Integral Formulas
Author: G. M. Henkin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112471784
Category : Social Science
Languages : en
Pages : 272
Book Description
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112471784
Category : Social Science
Languages : en
Pages : 272
Book Description
Andreotti-Grauert Theory by Integral Formulas
Author: G. M. Henkin
Publisher:
ISBN: 9781489967251
Category :
Languages : en
Pages : 272
Book Description
Publisher:
ISBN: 9781489967251
Category :
Languages : en
Pages : 272
Book Description
Andreotti-Grauert Theory by Integral Formulas
Author: Chenkin
Publisher: Springer Science & Business Media
ISBN: 1489967249
Category : Science
Languages : en
Pages : 271
Book Description
Publisher: Springer Science & Business Media
ISBN: 1489967249
Category : Science
Languages : en
Pages : 271
Book Description
Holomorphic Function Theory in Several Variables
Author: Christine Laurent-Thiébaut
Publisher: Springer Science & Business Media
ISBN: 0857290304
Category : Mathematics
Languages : en
Pages : 255
Book Description
This book provides an introduction to complex analysis in several variables. The viewpoint of integral representation theory together with Grauert's bumping method offers a natural extension of single variable techniques to several variables analysis and leads rapidly to important global results. Applications focus on global extension problems for CR functions, such as the Hartogs-Bochner phenomenon and removable singularities for CR functions. Three appendices on differential manifolds, sheaf theory and functional analysis make the book self-contained. Each chapter begins with a detailed abstract, clearly demonstrating the structure and relations of following chapters. New concepts are clearly defined and theorems and propositions are proved in detail. Historical notes are also provided at the end of each chapter. Clear and succinct, this book will appeal to post-graduate students, young researchers seeking an introduction to holomorphic function theory in several variables and lecturers seeking a concise book on the subject.
Publisher: Springer Science & Business Media
ISBN: 0857290304
Category : Mathematics
Languages : en
Pages : 255
Book Description
This book provides an introduction to complex analysis in several variables. The viewpoint of integral representation theory together with Grauert's bumping method offers a natural extension of single variable techniques to several variables analysis and leads rapidly to important global results. Applications focus on global extension problems for CR functions, such as the Hartogs-Bochner phenomenon and removable singularities for CR functions. Three appendices on differential manifolds, sheaf theory and functional analysis make the book self-contained. Each chapter begins with a detailed abstract, clearly demonstrating the structure and relations of following chapters. New concepts are clearly defined and theorems and propositions are proved in detail. Historical notes are also provided at the end of each chapter. Clear and succinct, this book will appeal to post-graduate students, young researchers seeking an introduction to holomorphic function theory in several variables and lecturers seeking a concise book on the subject.
Radon Integrals
Author: B. Anger
Publisher: Springer Science & Business Media
ISBN: 1461203775
Category : Mathematics
Languages : en
Pages : 339
Book Description
In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset.
Publisher: Springer Science & Business Media
ISBN: 1461203775
Category : Mathematics
Languages : en
Pages : 339
Book Description
In topological measure theory, Radon measures are the most important objects. In the context of locally compact spaces, there are two equivalent canonical definitions. As a set function, a Radon measure is an inner compact regular Borel measure, finite on compact sets. As a functional, it is simply a positive linear form, defined on the vector lattice of continuous real-valued functions with compact support. During the last few decades, in particular because of the developments of modem probability theory and mathematical physics, attention has been focussed on measures on general topological spaces which are no longer locally compact, e.g. spaces of continuous functions or Schwartz distributions. For a Radon measure on an arbitrary Hausdorff space, essentially three equivalent definitions have been proposed: As a set function, it was defined by L. Schwartz as an inner compact regular Borel measure which is locally bounded. G. Choquet considered it as a strongly additive right continuous content on the lattice of compact subsets. Following P.A. Meyer, N. Bourbaki defined a Radon measure as a locally uniformly bounded family of compatible positive linear forms, each defined on the vector lattice of continuous functions on some compact subset.
Several Complex Variables IV
Author: Semen G. Gindikin
Publisher: Springer Science & Business Media
ISBN: 3642612636
Category : Mathematics
Languages : en
Pages : 257
Book Description
This volume of the EMS contains four survey articles on analytic spaces. They are excellent introductions to each respective area. Starting from basic principles in several complex variables each article stretches out to current trends in research. Graduate students and researchers will find a useful addition in the extensive bibliography at the end of each article.
Publisher: Springer Science & Business Media
ISBN: 3642612636
Category : Mathematics
Languages : en
Pages : 257
Book Description
This volume of the EMS contains four survey articles on analytic spaces. They are excellent introductions to each respective area. Starting from basic principles in several complex variables each article stretches out to current trends in research. Graduate students and researchers will find a useful addition in the extensive bibliography at the end of each article.
Geometric Complex Analysis - Proceedings Of The Third International Research Institute Of Mathematical Society Of Japan
Author: J Noguchi
Publisher: World Scientific
ISBN: 9814548596
Category :
Languages : en
Pages : 738
Book Description
This proceedings is a collection of articles in several complex variables with emphasis on geometric methods and results, which includes several survey papers reviewing the development of the topics in these decades. Through this volume one can see an active field providing insight into other fields like algebraic geometry, dynamical systems and partial differential equations.
Publisher: World Scientific
ISBN: 9814548596
Category :
Languages : en
Pages : 738
Book Description
This proceedings is a collection of articles in several complex variables with emphasis on geometric methods and results, which includes several survey papers reviewing the development of the topics in these decades. Through this volume one can see an active field providing insight into other fields like algebraic geometry, dynamical systems and partial differential equations.
Analytic Continuation and q-Convexity
Author: Takeo Ohsawa
Publisher: Springer Nature
ISBN: 9811912394
Category : Mathematics
Languages : en
Pages : 66
Book Description
The focus of this book is on the further development of the classical achievements in analysis of several complex variables, the analytic continuation and the analytic structure of sets, to settings in which the q-pseudoconvexity in the sense of Rothstein and the q-convexity in the sense of Grauert play a crucial role. After giving a brief survey of notions of generalized convexity and their most important results, the authors present recent statements on analytic continuation related to them. Rothstein (1955) first introduced q-pseudoconvexity using generalized Hartogs figures. Słodkowski (1986) defined q-pseudoconvex sets by means of the existence of exhaustion functions which are q-plurisubharmonic in the sense of Hunt and Murray (1978). Examples of q-pseudoconvex sets appear as complements of analytic sets. Here, the relation of the analytic structure of graphs of continuous surfaces whose complements are q-pseudoconvex is investigated. As an outcome, the authors generalize results by Hartogs (1909), Shcherbina (1993), and Chirka (2001) on the existence of foliations of pseudoconcave continuous real hypersurfaces by smooth complex ones. A similar generalization is obtained by a completely different approach using L2-methods in the setting of q-convex spaces. The notion of q-convexity was developed by Rothstein (1955) and Grauert (1959) and extended to q-convex spaces by Andreotti and Grauert (1962). Andreotti–Grauert's finiteness theorem was applied by Andreotti and Norguet (1966–1971) to extend Grauert's solution of the Levi problem to q-convex spaces. A consequence is that the sets of (q-1)-cycles of q-convex domains with smooth boundaries in projective algebraic manifolds, which are equipped with complex structures as open subsets of Chow varieties, are in fact holomorphically convex. Complements of analytic curves are studied, and the relation of q-convexity and cycle spaces is explained. Finally, results for q-convex domains in projective spaces are shown and the q-convexity in analytic families is investigated.
Publisher: Springer Nature
ISBN: 9811912394
Category : Mathematics
Languages : en
Pages : 66
Book Description
The focus of this book is on the further development of the classical achievements in analysis of several complex variables, the analytic continuation and the analytic structure of sets, to settings in which the q-pseudoconvexity in the sense of Rothstein and the q-convexity in the sense of Grauert play a crucial role. After giving a brief survey of notions of generalized convexity and their most important results, the authors present recent statements on analytic continuation related to them. Rothstein (1955) first introduced q-pseudoconvexity using generalized Hartogs figures. Słodkowski (1986) defined q-pseudoconvex sets by means of the existence of exhaustion functions which are q-plurisubharmonic in the sense of Hunt and Murray (1978). Examples of q-pseudoconvex sets appear as complements of analytic sets. Here, the relation of the analytic structure of graphs of continuous surfaces whose complements are q-pseudoconvex is investigated. As an outcome, the authors generalize results by Hartogs (1909), Shcherbina (1993), and Chirka (2001) on the existence of foliations of pseudoconcave continuous real hypersurfaces by smooth complex ones. A similar generalization is obtained by a completely different approach using L2-methods in the setting of q-convex spaces. The notion of q-convexity was developed by Rothstein (1955) and Grauert (1959) and extended to q-convex spaces by Andreotti and Grauert (1962). Andreotti–Grauert's finiteness theorem was applied by Andreotti and Norguet (1966–1971) to extend Grauert's solution of the Levi problem to q-convex spaces. A consequence is that the sets of (q-1)-cycles of q-convex domains with smooth boundaries in projective algebraic manifolds, which are equipped with complex structures as open subsets of Chow varieties, are in fact holomorphically convex. Complements of analytic curves are studied, and the relation of q-convexity and cycle spaces is explained. Finally, results for q-convex domains in projective spaces are shown and the q-convexity in analytic families is investigated.
Toroidal Groups
Author: Yukitaka Abe
Publisher: Springer
ISBN: 3540449396
Category : Mathematics
Languages : en
Pages : 139
Book Description
Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.
Publisher: Springer
ISBN: 3540449396
Category : Mathematics
Languages : en
Pages : 139
Book Description
Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.
Stein Manifolds and Holomorphic Mappings
Author: Franc Forstnerič
Publisher: Springer Science & Business Media
ISBN: 3642222501
Category : Mathematics
Languages : en
Pages : 501
Book Description
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary.
Publisher: Springer Science & Business Media
ISBN: 3642222501
Category : Mathematics
Languages : en
Pages : 501
Book Description
The main theme of this book is the homotopy principle for holomorphic mappings from Stein manifolds to the newly introduced class of Oka manifolds. The book contains the first complete account of Oka-Grauert theory and its modern extensions, initiated by Mikhail Gromov and developed in the last decade by the author and his collaborators. Included is the first systematic presentation of the theory of holomorphic automorphisms of complex Euclidean spaces, a survey on Stein neighborhoods, connections between the geometry of Stein surfaces and Seiberg-Witten theory, and a wide variety of applications ranging from classical to contemporary.