Author: Tugrul Dayar
Publisher: Springer Science & Business Media
ISBN: 1461441900
Category : Mathematics
Languages : en
Pages : 91
Book Description
Kronecker products are used to define the underlying Markov chain (MC) in various modeling formalisms, including compositional Markovian models, hierarchical Markovian models, and stochastic process algebras. The motivation behind using a Kronecker structured representation rather than a flat one is to alleviate the storage requirements associated with the MC. With this approach, systems that are an order of magnitude larger can be analyzed on the same platform. The developments in the solution of such MCs are reviewed from an algebraic point of view and possible areas for further research are indicated with an emphasis on preprocessing using reordering, grouping, and lumping and numerical analysis using block iterative, preconditioned projection, multilevel, decompositional, and matrix analytic methods. Case studies from closed queueing networks and stochastic chemical kinetics are provided to motivate decompositional and matrix analytic methods, respectively.
Analyzing Markov Chains using Kronecker Products
Kronecker Modeling and Analysis of Multidimensional Markovian Systems
Author: Tuğrul Dayar
Publisher: Springer
ISBN: 3319971298
Category : Mathematics
Languages : en
Pages : 284
Book Description
This work considers Kronecker-based models with finite as well as countably infinite state spaces for multidimensional Markovian systems by paying particular attention to those whose reachable state spaces are smaller than their product state spaces. Numerical methods for steady-state and transient analysis of Kronecker-based multidimensional Markovian models are discussed in detail together with implementation issues. Case studies are provided to explain concepts and motivate use of methods. Having grown out of research from the past twenty years, this book expands upon the author’s previously published book Analyzing Markov Chains using Kronecker Products (Springer, 2012). The subject matter is interdisciplinary and at the intersection of applied mathematics and computer science. The book will be of use to researchers and graduate students with an understanding of basic linear algebra, probability, and discrete mathematics.
Publisher: Springer
ISBN: 3319971298
Category : Mathematics
Languages : en
Pages : 284
Book Description
This work considers Kronecker-based models with finite as well as countably infinite state spaces for multidimensional Markovian systems by paying particular attention to those whose reachable state spaces are smaller than their product state spaces. Numerical methods for steady-state and transient analysis of Kronecker-based multidimensional Markovian models are discussed in detail together with implementation issues. Case studies are provided to explain concepts and motivate use of methods. Having grown out of research from the past twenty years, this book expands upon the author’s previously published book Analyzing Markov Chains using Kronecker Products (Springer, 2012). The subject matter is interdisciplinary and at the intersection of applied mathematics and computer science. The book will be of use to researchers and graduate students with an understanding of basic linear algebra, probability, and discrete mathematics.
Introduction to Matrix Analytic Methods in Queues 1
Author: Srinivas R. Chakravarthy
Publisher: John Wiley & Sons
ISBN: 1394165412
Category : Mathematics
Languages : en
Pages : 372
Book Description
Matrix-analytic methods (MAM) were introduced by Professor Marcel Neuts and have been applied to a variety of stochastic models since. In order to provide a clear and deep understanding of MAM while showing their power, this book presents MAM concepts and explains the results using a number of worked-out examples. This book’s approach will inform and kindle the interest of researchers attracted to this fertile field. To allow readers to practice and gain experience in the algorithmic and computational procedures of MAM, Introduction to Matrix Analytic Methods in Queues 1 provides a number of computational exercises. It also incorporates simulation as another tool for studying complex stochastic models, especially when the state space of the underlying stochastic models under analytic study grows exponentially. The book’s detailed approach will make it more accessible for readers interested in learning about MAM in stochastic models.
Publisher: John Wiley & Sons
ISBN: 1394165412
Category : Mathematics
Languages : en
Pages : 372
Book Description
Matrix-analytic methods (MAM) were introduced by Professor Marcel Neuts and have been applied to a variety of stochastic models since. In order to provide a clear and deep understanding of MAM while showing their power, this book presents MAM concepts and explains the results using a number of worked-out examples. This book’s approach will inform and kindle the interest of researchers attracted to this fertile field. To allow readers to practice and gain experience in the algorithmic and computational procedures of MAM, Introduction to Matrix Analytic Methods in Queues 1 provides a number of computational exercises. It also incorporates simulation as another tool for studying complex stochastic models, especially when the state space of the underlying stochastic models under analytic study grows exponentially. The book’s detailed approach will make it more accessible for readers interested in learning about MAM in stochastic models.
Quantitative Evaluation of Systems
Author: Gul Agha
Publisher: Springer
ISBN: 331943425X
Category : Computers
Languages : en
Pages : 385
Book Description
This book constitutes the proceedings of the 13th International Conference on Quantitative Evaluation Systems, QEST 2016, held in Quebec City, Canada, in August 2016. The 21 full papers and 3 tool demonstration papers presented were carefully reviewed and selected from 46 submissions. They are organized in topical sections entitled: Markov processes; tools; sampling, inference, and optimization methods; Markov decision processes and Markovian analysis; networks.
Publisher: Springer
ISBN: 331943425X
Category : Computers
Languages : en
Pages : 385
Book Description
This book constitutes the proceedings of the 13th International Conference on Quantitative Evaluation Systems, QEST 2016, held in Quebec City, Canada, in August 2016. The 21 full papers and 3 tool demonstration papers presented were carefully reviewed and selected from 46 submissions. They are organized in topical sections entitled: Markov processes; tools; sampling, inference, and optimization methods; Markov decision processes and Markovian analysis; networks.
Reliability and Availability Engineering
Author: Kishor S. Trivedi
Publisher: Cambridge University Press
ISBN: 1108509002
Category : Technology & Engineering
Languages : en
Pages : 729
Book Description
Do you need to know what technique to use to evaluate the reliability of an engineered system? This self-contained guide provides comprehensive coverage of all the analytical and modeling techniques currently in use, from classical non-state and state space approaches, to newer and more advanced methods such as binary decision diagrams, dynamic fault trees, Bayesian belief networks, stochastic Petri nets, non-homogeneous Markov chains, semi-Markov processes, and phase type expansions. Readers will quickly understand the relative pros and cons of each technique, as well as how to combine different models together to address complex, real-world modeling scenarios. Numerous examples, case studies and problems provided throughout help readers put knowledge into practice, and a solutions manual and Powerpoint slides for instructors accompany the book online. This is the ideal self-study guide for students, researchers and practitioners in engineering and computer science.
Publisher: Cambridge University Press
ISBN: 1108509002
Category : Technology & Engineering
Languages : en
Pages : 729
Book Description
Do you need to know what technique to use to evaluate the reliability of an engineered system? This self-contained guide provides comprehensive coverage of all the analytical and modeling techniques currently in use, from classical non-state and state space approaches, to newer and more advanced methods such as binary decision diagrams, dynamic fault trees, Bayesian belief networks, stochastic Petri nets, non-homogeneous Markov chains, semi-Markov processes, and phase type expansions. Readers will quickly understand the relative pros and cons of each technique, as well as how to combine different models together to address complex, real-world modeling scenarios. Numerous examples, case studies and problems provided throughout help readers put knowledge into practice, and a solutions manual and Powerpoint slides for instructors accompany the book online. This is the ideal self-study guide for students, researchers and practitioners in engineering and computer science.
Input Modeling with Phase-Type Distributions and Markov Models
Author: Peter Buchholz
Publisher: Springer
ISBN: 3319066749
Category : Mathematics
Languages : en
Pages : 137
Book Description
Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system to model for example the inter-arrival times of packets in a computer network or failure times of components in a manufacturing plant. Typical application areas are performance and dependability analysis of computer systems, communication networks, logistics or manufacturing systems but also the analysis of biological or chemical reaction networks and similar problems. Often the measured values have a high variability and are correlated. It’s been known for a long time that Markov based models like phase type distributions or Markovian arrival processes are very general and allow one to capture even complex behaviors. However, the parameterization of these models results often in a complex and non-linear optimization problem. Only recently, several new results about the modeling capabilities of Markov based models and algorithms to fit the parameters of those models have been published.
Publisher: Springer
ISBN: 3319066749
Category : Mathematics
Languages : en
Pages : 137
Book Description
Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system to model for example the inter-arrival times of packets in a computer network or failure times of components in a manufacturing plant. Typical application areas are performance and dependability analysis of computer systems, communication networks, logistics or manufacturing systems but also the analysis of biological or chemical reaction networks and similar problems. Often the measured values have a high variability and are correlated. It’s been known for a long time that Markov based models like phase type distributions or Markovian arrival processes are very general and allow one to capture even complex behaviors. However, the parameterization of these models results often in a complex and non-linear optimization problem. Only recently, several new results about the modeling capabilities of Markov based models and algorithms to fit the parameters of those models have been published.
Measurement, Modelling and Evaluation of Computing Systems
Author: Reinhard German
Publisher: Springer
ISBN: 3319749471
Category : Computers
Languages : en
Pages : 358
Book Description
This book constitutes the proceedings of the 19th International GI/ITG Conference on Measurement, Modelling and Evaluation of Computing Systems, MMB 2018, held in Erlangen, Germany, in February 2018. The 16 full papers, 4 PhD track papers, and 9 tool papers presented in this volume were carefully reviewed and selected from 42 submissions. They are dealing with performance and dependability evaluation techniques for computer and communication systems and its related fields.
Publisher: Springer
ISBN: 3319749471
Category : Computers
Languages : en
Pages : 358
Book Description
This book constitutes the proceedings of the 19th International GI/ITG Conference on Measurement, Modelling and Evaluation of Computing Systems, MMB 2018, held in Erlangen, Germany, in February 2018. The 16 full papers, 4 PhD track papers, and 9 tool papers presented in this volume were carefully reviewed and selected from 42 submissions. They are dealing with performance and dependability evaluation techniques for computer and communication systems and its related fields.
Sensitivity Analysis: Matrix Methods in Demography and Ecology
Author: Hal Caswell
Publisher: Springer
ISBN: 3030105342
Category : Social Science
Languages : en
Pages : 308
Book Description
This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.
Publisher: Springer
ISBN: 3030105342
Category : Social Science
Languages : en
Pages : 308
Book Description
This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.
Representation Discovery using Harmonic Analysis
Author: Sridhar López
Publisher: Springer Nature
ISBN: 3031015460
Category : Computers
Languages : en
Pages : 147
Book Description
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions
Publisher: Springer Nature
ISBN: 3031015460
Category : Computers
Languages : en
Pages : 147
Book Description
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions
Discrete Harmonic Analysis
Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 1316863654
Category : Mathematics
Languages : en
Pages : 589
Book Description
This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.
Publisher: Cambridge University Press
ISBN: 1316863654
Category : Mathematics
Languages : en
Pages : 589
Book Description
This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science.