Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor

Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor PDF Author: Iraj Sadegh Amiri
Publisher: Springer
ISBN: 9811065500
Category : Technology & Engineering
Languages : en
Pages : 92

Get Book Here

Book Description
This book discusses analytical approaches and modeling of the breakdown voltage (BV) effects on graphene-based transistors. It presents semi-analytical models for lateral electric field, length of velocity saturation region (LVSR), ionization coefficient (α), and breakdown voltage (BV) of single and double-gate graphene nanoribbon field effect transistors (GNRFETs). The application of Gauss’s law at drain and source regions is employed in order to derive surface potential and lateral electric field equations. LVSR is then calculated as a solution of surface potential at saturation condition. The ionization coefficient is modelled and calculated by deriving equations for probability of collisions in ballistic and drift modes based on the lucky drift theory of ionization. The threshold energy of ionization is computed using simulation and an empirical equation is derived semi-analytically. Lastly avalanche breakdown condition is employed to calculate the lateral BV. On the basis of this, simple analytical and semi-analytical models are proposed for the LVSR and BV, which could be used in the design and optimization of semiconductor devices and sensors. The proposed equations are used to examine BV at different channel lengths, supply voltages, oxide thickness, GNR widths, and gate voltages. Simulation results show that the operating voltage of FETs could be as low as 0.25 V in order to prevent breakdown. However, after optimization, it can go as high as 1.5 V. This work is useful for researchers working in the area of graphene nanoribbon-based transistors.

Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor

Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor PDF Author: Iraj Sadegh Amiri
Publisher: Springer
ISBN: 9811065500
Category : Technology & Engineering
Languages : en
Pages : 92

Get Book Here

Book Description
This book discusses analytical approaches and modeling of the breakdown voltage (BV) effects on graphene-based transistors. It presents semi-analytical models for lateral electric field, length of velocity saturation region (LVSR), ionization coefficient (α), and breakdown voltage (BV) of single and double-gate graphene nanoribbon field effect transistors (GNRFETs). The application of Gauss’s law at drain and source regions is employed in order to derive surface potential and lateral electric field equations. LVSR is then calculated as a solution of surface potential at saturation condition. The ionization coefficient is modelled and calculated by deriving equations for probability of collisions in ballistic and drift modes based on the lucky drift theory of ionization. The threshold energy of ionization is computed using simulation and an empirical equation is derived semi-analytically. Lastly avalanche breakdown condition is employed to calculate the lateral BV. On the basis of this, simple analytical and semi-analytical models are proposed for the LVSR and BV, which could be used in the design and optimization of semiconductor devices and sensors. The proposed equations are used to examine BV at different channel lengths, supply voltages, oxide thickness, GNR widths, and gate voltages. Simulation results show that the operating voltage of FETs could be as low as 0.25 V in order to prevent breakdown. However, after optimization, it can go as high as 1.5 V. This work is useful for researchers working in the area of graphene nanoribbon-based transistors.

Modeling of Graphene Nanoribbon Field Effect Transistor

Modeling of Graphene Nanoribbon Field Effect Transistor PDF Author: Meisam Rahmani
Publisher:
ISBN:
Category : Field-effect transistors
Languages : en
Pages : 137

Get Book Here

Book Description


Advanced Nanoelectronics

Advanced Nanoelectronics PDF Author: Razali Ismail
Publisher: CRC Press
ISBN: 1439856818
Category : Science
Languages : en
Pages : 456

Get Book Here

Book Description
While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The book begins by introducing the basic ideas related to quantum theory that are needed to better understand nanoscale structures found in nanoelectronics, including graphenes, carbon nanotubes, and quantum wells, dots, and wires. It goes on to highlight some of the key concepts required to understand nanotransistors. These concepts are then applied to the carbon nanotube field effect transistor (CNTFET). Several chapters cover graphene, an unzipped form of CNT that is the recently discovered allotrope of carbon that has gained a tremendous amount of scientific and technological interest. The book discusses the development of the graphene nanoribbon field effect transistor (GNRFET) and its use as a possible replacement to overcome the CNT chirality challenge. It also examines silicon nanowire (SiNW) as a new candidate for achieving the downscaling of devices. The text describes the modeling and fabrication of SiNW, including a new top-down fabrication technique. Strained technology, which changes the properties of device materials rather than changing the device geometry, is also discussed. The book ends with a look at the technical and economic challenges that face the commercialization of nanoelectronics and what universities, industries, and government can do to lower the barriers. A useful resource for professionals, researchers, and scientists, this work brings together state-of-the-art technical and scientific information on important topics in advanced nanoelectronics.

Modeling and Performance Evaluation of the Graphene Nanoribbon Field Effect Transistor

Modeling and Performance Evaluation of the Graphene Nanoribbon Field Effect Transistor PDF Author: Eunice Ng Hui Xian
Publisher:
ISBN:
Category : Graphene
Languages : en
Pages : 94

Get Book Here

Book Description


Modeling and Simulation of Strained Graphene Nanoribbon Field Effect Transistor

Modeling and Simulation of Strained Graphene Nanoribbon Field Effect Transistor PDF Author: Nurul Aida Izuani Che Rosid
Publisher:
ISBN:
Category :
Languages : en
Pages : 103

Get Book Here

Book Description


Graphene Science Handbook, Six-Volume Set

Graphene Science Handbook, Six-Volume Set PDF Author: Mahmood Aliofkhazraei
Publisher: CRC Press
ISBN: 1466591196
Category : Science
Languages : en
Pages : 3379

Get Book Here

Book Description
Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)

Graphene Science Handbook

Graphene Science Handbook PDF Author: Mahmood Aliofkhazraei
Publisher: CRC Press
ISBN: 146659134X
Category : Science
Languages : en
Pages : 480

Get Book Here

Book Description
Explore the Practical Applications and Promising Developments of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic

Modeling and Simulation of Bilayer Graphene Nanoribbon Field Effect Transistor

Modeling and Simulation of Bilayer Graphene Nanoribbon Field Effect Transistor PDF Author: Seyed Mahdi Mousavi
Publisher:
ISBN:
Category : Engineering mathematics
Languages : en
Pages : 0

Get Book Here

Book Description


Carbon Nanotubes for Interconnects

Carbon Nanotubes for Interconnects PDF Author: Aida Todri-Sanial
Publisher: Springer
ISBN: 3319297465
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits.

Modeling of Subband Effects on Graphene Nanoribbon Field Effect Transistor Transport

Modeling of Subband Effects on Graphene Nanoribbon Field Effect Transistor Transport PDF Author: Nurkhairah Redzuan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description