Author: H. Davenport
Publisher: Cambridge University Press
ISBN: 9781139441230
Category : Mathematics
Languages : en
Pages : 164
Book Description
Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring's problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three prominent authorities describe the modern context and recent developments. A thorough bibliography has also been added.
Analytic Methods for Diophantine Equations and Diophantine Inequalities
Author: H. Davenport
Publisher: Cambridge University Press
ISBN: 9781139441230
Category : Mathematics
Languages : en
Pages : 164
Book Description
Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring's problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three prominent authorities describe the modern context and recent developments. A thorough bibliography has also been added.
Publisher: Cambridge University Press
ISBN: 9781139441230
Category : Mathematics
Languages : en
Pages : 164
Book Description
Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring's problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three prominent authorities describe the modern context and recent developments. A thorough bibliography has also been added.
Analytic Methods for Diophantine Equations and Diophantine Inequalities
Author: Harold Davenport
Publisher:
ISBN:
Category : Diophantine analysis
Languages : en
Pages : 190
Book Description
Publisher:
ISBN:
Category : Diophantine analysis
Languages : en
Pages : 190
Book Description
Diophantine Equations and Inequalities in Algebraic Number Fields
Author: Yuan Wang
Publisher: Springer Science & Business Media
ISBN: 3642581714
Category : Mathematics
Languages : en
Pages : 185
Book Description
The circle method has its genesis in a paper of Hardy and Ramanujan (see [Hardy 1])in 1918concernedwiththepartitionfunction andtheproblemofrep resenting numbers as sums ofsquares. Later, in a series of papers beginning in 1920entitled "some problems of'partitio numerorum''', Hardy and Littlewood (see [Hardy 1]) created and developed systematically a new analytic method, the circle method in additive number theory. The most famous problems in ad ditive number theory, namely Waring's problem and Goldbach's problem, are treated in their papers. The circle method is also called the Hardy-Littlewood method. Waring's problem may be described as follows: For every integer k 2 2, there is a number s= s(k) such that every positive integer N is representable as (1) where Xi arenon-negative integers. This assertion wasfirst proved by Hilbert [1] in 1909. Using their powerful circle method, Hardy and Littlewood obtained a deeper result on Waring's problem. They established an asymptotic formula for rs(N), the number of representations of N in the form (1), namely k 1 provided that 8 2 (k - 2)2 - +5. Here
Publisher: Springer Science & Business Media
ISBN: 3642581714
Category : Mathematics
Languages : en
Pages : 185
Book Description
The circle method has its genesis in a paper of Hardy and Ramanujan (see [Hardy 1])in 1918concernedwiththepartitionfunction andtheproblemofrep resenting numbers as sums ofsquares. Later, in a series of papers beginning in 1920entitled "some problems of'partitio numerorum''', Hardy and Littlewood (see [Hardy 1]) created and developed systematically a new analytic method, the circle method in additive number theory. The most famous problems in ad ditive number theory, namely Waring's problem and Goldbach's problem, are treated in their papers. The circle method is also called the Hardy-Littlewood method. Waring's problem may be described as follows: For every integer k 2 2, there is a number s= s(k) such that every positive integer N is representable as (1) where Xi arenon-negative integers. This assertion wasfirst proved by Hilbert [1] in 1909. Using their powerful circle method, Hardy and Littlewood obtained a deeper result on Waring's problem. They established an asymptotic formula for rs(N), the number of representations of N in the form (1), namely k 1 provided that 8 2 (k - 2)2 - +5. Here
Diophantine Equations Over Function Fields
Author: R. C. Mason
Publisher: Cambridge University Press
ISBN: 9780521269834
Category : Mathematics
Languages : en
Pages : 142
Book Description
A self-contained account of a new approach to the subject.
Publisher: Cambridge University Press
ISBN: 9780521269834
Category : Mathematics
Languages : en
Pages : 142
Book Description
A self-contained account of a new approach to the subject.
Diophantine Inequalities
Author: Roger Clive Baker
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 298
Book Description
Starting with the work of I.M. Vinogradov and H. Heilbronn, the author develops the theme of nonlinear Diophantine approximation in a number of different directions.
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 298
Book Description
Starting with the work of I.M. Vinogradov and H. Heilbronn, the author develops the theme of nonlinear Diophantine approximation in a number of different directions.
Unit Equations in Diophantine Number Theory
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1107097606
Category : Mathematics
Languages : en
Pages : 381
Book Description
A comprehensive, graduate-level treatment of unit equations and their various applications.
Publisher: Cambridge University Press
ISBN: 1107097606
Category : Mathematics
Languages : en
Pages : 381
Book Description
A comprehensive, graduate-level treatment of unit equations and their various applications.
Discriminant Equations in Diophantine Number Theory
Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1107097614
Category : Mathematics
Languages : en
Pages : 477
Book Description
The first comprehensive and up-to-date account of discriminant equations and their applications. For graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1107097614
Category : Mathematics
Languages : en
Pages : 477
Book Description
The first comprehensive and up-to-date account of discriminant equations and their applications. For graduate students and researchers.
A Course in Analytic Number Theory
Author: Marius Overholt
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 394
Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.
Selected Papers Of Wang Yuan
Author: Yuan Wang
Publisher: World Scientific
ISBN: 9814480797
Category : Mathematics
Languages : en
Pages : 512
Book Description
This volume presents a comprehensive collection of Wang Yuan's original important papers which are not available elsewhere, since the majority of the papers were published in China.Covering both pure number theory and applied mathematics, this book is important for understanding Wang Yuan's academic career and also the development of Chinese mathematics in recent years, since Wang Yuan's work has a wide-ranging influence in China.Wang Yuan is a professor and academician of the Chinese Academy of Sciences. He received his honorable Doctorship from Hong Kong Baptist University. He has published 70 papers and ten books.
Publisher: World Scientific
ISBN: 9814480797
Category : Mathematics
Languages : en
Pages : 512
Book Description
This volume presents a comprehensive collection of Wang Yuan's original important papers which are not available elsewhere, since the majority of the papers were published in China.Covering both pure number theory and applied mathematics, this book is important for understanding Wang Yuan's academic career and also the development of Chinese mathematics in recent years, since Wang Yuan's work has a wide-ranging influence in China.Wang Yuan is a professor and academician of the Chinese Academy of Sciences. He received his honorable Doctorship from Hong Kong Baptist University. He has published 70 papers and ten books.
Quadratic Diophantine Equations
Author: Titu Andreescu
Publisher: Springer
ISBN: 0387541098
Category : Mathematics
Languages : en
Pages : 224
Book Description
This text treats the classical theory of quadratic diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. The presentation features two basic methods to investigate and motivate the study of quadratic diophantine equations: the theories of continued fractions and quadratic fields. It also discusses Pell’s equation and its generalizations, and presents some important quadratic diophantine equations and applications. The inclusion of examples makes this book useful for both research and classroom settings.
Publisher: Springer
ISBN: 0387541098
Category : Mathematics
Languages : en
Pages : 224
Book Description
This text treats the classical theory of quadratic diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. The presentation features two basic methods to investigate and motivate the study of quadratic diophantine equations: the theories of continued fractions and quadratic fields. It also discusses Pell’s equation and its generalizations, and presents some important quadratic diophantine equations and applications. The inclusion of examples makes this book useful for both research and classroom settings.