Analytic Functions Smooth up to the Boundary

Analytic Functions Smooth up to the Boundary PDF Author: Nikolai A. Shirokov
Publisher: Springer
ISBN: 3540391754
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sense, up to the boundary. The peculiar properties of such a factorization are investigated for the most common classes of Lipschitz-like analytic functions. The book sets out to create a satisfactory factorization theory as exists for Hardy classes. The reader will find, among other things, the theorem on smoothness for the outer part of a function, the generalization of the theorem of V.P. Havin and F.A. Shamoyan also known in the mathematical lore as the unpublished Carleson-Jacobs theorem, the complete description of the zero-set of analytic functions continuous up to the boundary, generalizing the classical Carleson-Beurling theorem, and the structure of closed ideals in the new wide range of Banach algebras of analytic functions. The first three chapters assume the reader has taken a standard course on one complex variable; the fourth chapter requires supplementary papers cited there. The monograph addresses both final year students and doctoral students beginning to work in this area, and researchers who will find here new results, proofs and methods.

Analytic Functions Smooth Up to the Boundary

Analytic Functions Smooth Up to the Boundary PDF Author: Nikolai A. Shirokov
Publisher: Lecture Notes in Mathematics
ISBN:
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This research monograph concerns the Nevanlinna factorization of analytic functions smooth, in a sense, up to the boundary. The peculiar properties of such a factorization are investigated for the most common classes of Lipschitz-like analytic functions. The book sets out to create a satisfactory factorization theory as exists for Hardy classes. The reader will find, among other things, the theorem on smoothness for the outer part of a function, the generalization of the theorem of V.P. Havin and F.A. Shamoyan also known in the mathematical lore as the unpublished Carleson-Jacobs theorem, the complete description of the zero-set of analytic functions continuous up to the boundary, generalizing the classical Carleson-Beurling theorem, and the structure of closed ideals in the new wide range of Banach algebras of analytic functions. The first three chapters assume the reader has taken a standard course on one complex variable; the fourth chapter requires supplementary papers cited there. The monograph addresses both final year students and doctoral students beginning to work in this area, and researchers who will find here new results, proofs and methods.

Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2)

Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2) PDF Author: María Cristina Pereyra
Publisher: Springer
ISBN: 3319515934
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
This book is the second of a two volume series. Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book features fully-refereed, high-quality papers exploring new results and trends in weighted norm inequalities, Schur-Agler class functions, complex analysis, dynamical systems, and dyadic harmonic analysis. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. A survey of the two weight problem for the Hilbert transform and an expository article on the Clark model to the case of non-singular measures and applications to the study of rank-one perturbations are included. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6,2014. During the event, participants honored the memory of Cora Sadosky—a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional scientist and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.

Proceedings of the First Advanced Course in Operator Theory and Complex Analysis

Proceedings of the First Advanced Course in Operator Theory and Complex Analysis PDF Author: Alfonso Montes Rodríguez
Publisher: Universidad de Sevilla
ISBN: 9788447210244
Category : Functions of complex variables
Languages : en
Pages : 180

Get Book Here

Book Description
Topics of the Advanced Course in Operator Theory and Complex Analysis held in Seville in June 2004 ranged from determining the conformal type of Riemann surfaces, to concrete classical operators acting on classical spaces of analytic functions, passing through how the behaviour of the powers of the classical shift operator determines whether every function in a given space of analytic functions on the disk has non-tangential limits almost everywhere, and lattices of jointly invariant subspaces for two translations semigroup.

Spectral Theory of Functions and Operators

Spectral Theory of Functions and Operators PDF Author: Nikolaj Kapitonovič Nikolʹskij
Publisher: American Mathematical Soc.
ISBN: 9780821830307
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description


Function Theory and ℓp Spaces

Function Theory and ℓp Spaces PDF Author: Raymond Cheng
Publisher: American Mathematical Soc.
ISBN: 1470455935
Category : Education
Languages : en
Pages : 239

Get Book Here

Book Description
The classical ℓp sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces ℓpA of analytic functions whose Taylor coefficients belong to ℓp. Relations between the Banach space ℓp and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of ℓpA and a discussion of the Wiener algebra ℓ1A. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.

The Uncertainty Principle in Harmonic Analysis

The Uncertainty Principle in Harmonic Analysis PDF Author: Victor Havin
Publisher: Springer Science & Business Media
ISBN: 3642783775
Category : Mathematics
Languages : en
Pages : 547

Get Book Here

Book Description
The present book is a collection of variations on a theme which can be summed up as follows: It is impossible for a non-zero function and its Fourier transform to be simultaneously very small. In other words, the approximate equalities x :::::: y and x :::::: fj cannot hold, at the same time and with a high degree of accuracy, unless the functions x and yare identical. Any information gained about x (in the form of a good approximation y) has to be paid for by a corresponding loss of control on x, and vice versa. Such is, roughly speaking, the import of the Uncertainty Principle (or UP for short) referred to in the title ofthis book. That principle has an unmistakable kinship with its namesake in physics - Heisenberg's famous Uncertainty Principle - and may indeed be regarded as providing one of mathematical interpretations for the latter. But we mention these links with Quantum Mechanics and other connections with physics and engineering only for their inspirational value, and hasten to reassure the reader that at no point in this book will he be led beyond the world of purely mathematical facts. Actually, the portion of this world charted in our book is sufficiently vast, even though we confine ourselves to trigonometric Fourier series and integrals (so that "The U. P. in Fourier Analysis" might be a slightly more appropriate title than the one we chose).

Complex Analysis and Spectral Theory

Complex Analysis and Spectral Theory PDF Author: V. P. Havin
Publisher: Springer
ISBN: 3540386262
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description


Analytic Theory of Continued Fractions III

Analytic Theory of Continued Fractions III PDF Author: Lisa Jacobsen
Publisher: Springer
ISBN: 354046820X
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description


Commutative Harmonic Analysis III

Commutative Harmonic Analysis III PDF Author: V.P. Havin
Publisher: Springer Science & Business Media
ISBN: 3642578543
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
Aimed at readers who have learned the principles of harmonic analysis, this book provides a variety of perspectives on this very important classical subject. The authors have written a truly outstanding book which distinguishes itself by its excellent expository style.

Progress in Analysis

Progress in Analysis PDF Author: International Society for Analysis, Applications, and Computation. Congress
Publisher: World Scientific
ISBN: 9812794255
Category : Mathematics
Languages : en
Pages : 737

Get Book Here

Book Description
The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting. Contents: .: Volume 1: Function Spaces and Fractional Calculus (V I Burenkov & S Samko); Asymptotic Decomposition (Methods of Small Parameters, Averaging Theory) (J A Dubinski); Integral Transforms and Applications (S Saitoh et al.); Analytic Functionals, Hyperfunctions and Generalized Functions (M Morimoto & H Komatsu); Geometric Function Theory (G Kohr & M Kohr); omplex Function Spaces (R Aulaskari & I Laine); Value Distribution Theory and Complex Dynamics (C C Yang); Clifford Analysis (K Grlebeck et al.); Octonions (T Dray & C Monogue); Nonlinear Potential Theory (O Martio); Classical and Fine Potential Theory, Holomorphic and Finely Holomorphic Functions (P Tamrazov); Differential Geometry and Control Theory for PDEs (B Gulliver et al.); Differential Geometry and Quantum Physics (-); Dynamical Systems (B Fiedler); Attractors for Partial Differential Equations (G Raugel); Spectral Theory of Differential Operators (B Vainberg); Pseudodifferential Operators, Quantization and Signal Analysis (M W Wong); Microlocal Analysis (B-W Schulze & M Korey); Volume 2: Complex and Functional Analytic Methods in PDEs (A Cialdea et al.); Geometric Properties of Solutions of PDEs (R Magnanini); Qualitative Properties of Solutions of Hyperbolic and SchrAdinger Equations (M Reissig & K Yagdjian); Homogenization Moving Boundaries and Porous Media (A Bourgeat & R P Gilbert); Constructive Methods in Applied Problems (P Krutitskii); Waves in Complex Media (R P Gilbert & A Wirgin); Nonlinear Waves (I Lasiecka & H Koch); Mathematical Analysis of Problems in Solid Mechanics (K Hackl & X Li); Direct and Inverse Scattering (L Fishman); Inverse Problems (G N Makrakis et al.); Mathematical Methods in Non-Destructive Evaluation and Non-Destructive Testing (A Wirgin); Numerical Methods for PDEs, Systems and Optimization (A Ben-Israel & I Herrera). Readership: Graduate students and researchers in real, complex, numerical analysis, as well as mathematical physics."