Author: Andre Unterberger
Publisher: CRC Press
ISBN: 9780849378737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Symmetric cones, possibly disguised under non-linear changes of coordinates, are the building blocks of manifolds with edges, corners, or conical points of a very general nature. Besides being a canonical open set of some Euclidean space, a symmetric cone L has an intrinsic Riemannian structure of its own, turning it into a symmetric space. These two structures make it possible to define on L a pseudodifferential analysis (the Fuchs calculus). The considerable interest in pseudodifferential problems on manifolds with non-smooth boundaries makes the precise analyses presented in this book both interesting and important. Much of the material in this book has never been previously published. The methods used throughout the text rely heavily on the use of tools from quantum mechanics, such as representation theory and coherent states. Classes of operators defined by their symbols are given intrinsic characterizations. Harmonic analysis is discussed via the automorphism group of the complex tube over L. The basic definitions governing the Fuchs calculus are provided, and a thorough exposition of the fundamental facts concerning the geometry of symmetric cones is given. The relationship with Jordan algebras is outlined and the general theory is illustrated by numerous examples. The book offers the reader the technical tools for proving the main properties of the Fuchs calculus, with an emphasis on using the non-Euclidean Riemannian structure of the underlying cone. The fundamental results of pseudodifferential analysis are presented. The authors also develop the relationship to complex analysis and group representation. This book benefits researchers interested in analysis on non-smooth domains or anyone working in pseudodifferential analysis. People interested in the geometry or harmonic analysis of symmetric cones will find in this valuable reference a new range of applications of complex analysis on tube-type symmetric domains and of the theory of Jordan algebras.
Pseudodifferential Analysis on Symmetric Cones
Author: Andre Unterberger
Publisher: CRC Press
ISBN: 9780849378737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Symmetric cones, possibly disguised under non-linear changes of coordinates, are the building blocks of manifolds with edges, corners, or conical points of a very general nature. Besides being a canonical open set of some Euclidean space, a symmetric cone L has an intrinsic Riemannian structure of its own, turning it into a symmetric space. These two structures make it possible to define on L a pseudodifferential analysis (the Fuchs calculus). The considerable interest in pseudodifferential problems on manifolds with non-smooth boundaries makes the precise analyses presented in this book both interesting and important. Much of the material in this book has never been previously published. The methods used throughout the text rely heavily on the use of tools from quantum mechanics, such as representation theory and coherent states. Classes of operators defined by their symbols are given intrinsic characterizations. Harmonic analysis is discussed via the automorphism group of the complex tube over L. The basic definitions governing the Fuchs calculus are provided, and a thorough exposition of the fundamental facts concerning the geometry of symmetric cones is given. The relationship with Jordan algebras is outlined and the general theory is illustrated by numerous examples. The book offers the reader the technical tools for proving the main properties of the Fuchs calculus, with an emphasis on using the non-Euclidean Riemannian structure of the underlying cone. The fundamental results of pseudodifferential analysis are presented. The authors also develop the relationship to complex analysis and group representation. This book benefits researchers interested in analysis on non-smooth domains or anyone working in pseudodifferential analysis. People interested in the geometry or harmonic analysis of symmetric cones will find in this valuable reference a new range of applications of complex analysis on tube-type symmetric domains and of the theory of Jordan algebras.
Publisher: CRC Press
ISBN: 9780849378737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Symmetric cones, possibly disguised under non-linear changes of coordinates, are the building blocks of manifolds with edges, corners, or conical points of a very general nature. Besides being a canonical open set of some Euclidean space, a symmetric cone L has an intrinsic Riemannian structure of its own, turning it into a symmetric space. These two structures make it possible to define on L a pseudodifferential analysis (the Fuchs calculus). The considerable interest in pseudodifferential problems on manifolds with non-smooth boundaries makes the precise analyses presented in this book both interesting and important. Much of the material in this book has never been previously published. The methods used throughout the text rely heavily on the use of tools from quantum mechanics, such as representation theory and coherent states. Classes of operators defined by their symbols are given intrinsic characterizations. Harmonic analysis is discussed via the automorphism group of the complex tube over L. The basic definitions governing the Fuchs calculus are provided, and a thorough exposition of the fundamental facts concerning the geometry of symmetric cones is given. The relationship with Jordan algebras is outlined and the general theory is illustrated by numerous examples. The book offers the reader the technical tools for proving the main properties of the Fuchs calculus, with an emphasis on using the non-Euclidean Riemannian structure of the underlying cone. The fundamental results of pseudodifferential analysis are presented. The authors also develop the relationship to complex analysis and group representation. This book benefits researchers interested in analysis on non-smooth domains or anyone working in pseudodifferential analysis. People interested in the geometry or harmonic analysis of symmetric cones will find in this valuable reference a new range of applications of complex analysis on tube-type symmetric domains and of the theory of Jordan algebras.
Analysis on Symmetric Cones
Author: Jacques Faraut
Publisher: Oxford University Press on Demand
ISBN: 9780198534778
Category : History
Languages : en
Pages : 382
Book Description
The present book is the first to treat analysis on symmetric cones in a systematic way. It starts by describing, with the simplest available proofs, the Jordan algebra approach to the geometric and algebraic foundations of the theory due to M. Koecher and his school. In subsequent parts itdiscusses harmonic analysis and special functions associated to symmetric cones; it also tries these results together with the study of holomorphic functions on bounded symmetric domains of tube type. It contains a number of new results and new proofs of old results.
Publisher: Oxford University Press on Demand
ISBN: 9780198534778
Category : History
Languages : en
Pages : 382
Book Description
The present book is the first to treat analysis on symmetric cones in a systematic way. It starts by describing, with the simplest available proofs, the Jordan algebra approach to the geometric and algebraic foundations of the theory due to M. Koecher and his school. In subsequent parts itdiscusses harmonic analysis and special functions associated to symmetric cones; it also tries these results together with the study of holomorphic functions on bounded symmetric domains of tube type. It contains a number of new results and new proofs of old results.
Causal Symmetric Spaces
Author: Gestur Olafsson
Publisher: Academic Press
ISBN: 0080528724
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Publisher: Academic Press
ISBN: 0080528724
Category : Mathematics
Languages : en
Pages : 303
Book Description
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Harmonic Analysis and Integral Geometry
Author: Massimo Picardello
Publisher: CRC Press
ISBN: 0429530315
Category : Mathematics
Languages : en
Pages : 194
Book Description
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lecture
Publisher: CRC Press
ISBN: 0429530315
Category : Mathematics
Languages : en
Pages : 194
Book Description
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lecture
Analysis and Geometry on Complex Homogeneous Domains
Author: Jacques Faraut
Publisher: Springer Science & Business Media
ISBN: 1461213665
Category : Mathematics
Languages : en
Pages : 539
Book Description
A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.
Publisher: Springer Science & Business Media
ISBN: 1461213665
Category : Mathematics
Languages : en
Pages : 539
Book Description
A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.
Geometric Analysis and Integral Geometry
Author: Eric Todd Quinto
Publisher: American Mathematical Soc.
ISBN: 0821887386
Category : Mathematics
Languages : en
Pages : 299
Book Description
Provides an historical overview of several decades in integral geometry and geometric analysis as well as recent advances in these fields and closely related areas. It contains several articles focusing on the mathematical work of Sigurdur Helgason, including an overview of his research by Gestur Olafsson and Robert Stanton.
Publisher: American Mathematical Soc.
ISBN: 0821887386
Category : Mathematics
Languages : en
Pages : 299
Book Description
Provides an historical overview of several decades in integral geometry and geometric analysis as well as recent advances in these fields and closely related areas. It contains several articles focusing on the mathematical work of Sigurdur Helgason, including an overview of his research by Gestur Olafsson and Robert Stanton.
Representation Theory and Harmonic Analysis
Author: Ray Alden Kunze
Publisher: American Mathematical Soc.
ISBN: 0821803107
Category : Mathematics
Languages : en
Pages : 270
Book Description
This volume stems from a special session on representation theory and harmonic analysis held in honour of Ray Kunze at the 889th meeting of the American Mathematical Society on January 12-15 1994. It is intended for graduate students and research mathematicians interested in topological groups, lie groups and abstract harmonic analysis.
Publisher: American Mathematical Soc.
ISBN: 0821803107
Category : Mathematics
Languages : en
Pages : 270
Book Description
This volume stems from a special session on representation theory and harmonic analysis held in honour of Ray Kunze at the 889th meeting of the American Mathematical Society on January 12-15 1994. It is intended for graduate students and research mathematicians interested in topological groups, lie groups and abstract harmonic analysis.
Asymptotic Analysis of Fields in Multi-structures
Author: Vladimir Kozlov
Publisher: Oxford University Press, USA
ISBN: 9780198514954
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book outlines a powerful new method in analysis which has already been instrumental in solving complicated partial differential equations arising in various areas of engineering. It is suitable for those working with partial differential equations and their applications, and an undergraduate knowledge of PDE's and functional analysis is assumed.
Publisher: Oxford University Press, USA
ISBN: 9780198514954
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book outlines a powerful new method in analysis which has already been instrumental in solving complicated partial differential equations arising in various areas of engineering. It is suitable for those working with partial differential equations and their applications, and an undergraduate knowledge of PDE's and functional analysis is assumed.
Bulletin of the American Mathematical Society
Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 622
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 622
Book Description
Bulletin (new Series) of the American Mathematical Society
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 592
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 592
Book Description