Author: Jin-Ting Zhang
Publisher: CRC Press
ISBN: 1439862745
Category : Mathematics
Languages : en
Pages : 406
Book Description
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional l
Analysis of Variance for Functional Data
Author: Jin-Ting Zhang
Publisher: CRC Press
ISBN: 1439862745
Category : Mathematics
Languages : en
Pages : 406
Book Description
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional l
Publisher: CRC Press
ISBN: 1439862745
Category : Mathematics
Languages : en
Pages : 406
Book Description
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional l
Analysis of Variance for Functional Data
Author: Jin-Ting Zhang
Publisher:
ISBN: 9781032920399
Category : Mathematics
Languages : en
Pages : 0
Book Description
This self-contained book presents up-to-date hypothesis testing methods for functional data analysis. Useful for statistical researchers and practitioners analyzing functional data, it gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB(R) code. The book covers the reconstruction of
Publisher:
ISBN: 9781032920399
Category : Mathematics
Languages : en
Pages : 0
Book Description
This self-contained book presents up-to-date hypothesis testing methods for functional data analysis. Useful for statistical researchers and practitioners analyzing functional data, it gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB(R) code. The book covers the reconstruction of
Analysis of Variance for Functional Data
Author: Jin-Ting Zhang
Publisher: Chapman and Hall/CRC
ISBN: 9781439862735
Category : Mathematics
Languages : en
Pages : 0
Book Description
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional linear models with functional responses, ill-conditioned functional linear models, diagnostics of functional observations, heteroscedastic ANOVA for functional data, and testing equality of covariance functions. Although the methodologies presented are designed for curve data, they can be extended to surface data. Useful for statistical researchers and practitioners analyzing functional data, this self-contained book gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB® code. The author provides a number of simple methods for functional hypothesis testing. He discusses pointwise, L2-norm-based, F-type, and bootstrap tests. Assuming only basic knowledge of statistics, calculus, and matrix algebra, the book explains the key ideas at a relatively low technical level using real data examples. Each chapter also includes bibliographical notes and exercises. Real functional data sets from the text and MATLAB codes for analyzing the data examples are available for download from the author’s website.
Publisher: Chapman and Hall/CRC
ISBN: 9781439862735
Category : Mathematics
Languages : en
Pages : 0
Book Description
Despite research interest in functional data analysis in the last three decades, few books are available on the subject. Filling this gap, Analysis of Variance for Functional Data presents up-to-date hypothesis testing methods for functional data analysis. The book covers the reconstruction of functional observations, functional ANOVA, functional linear models with functional responses, ill-conditioned functional linear models, diagnostics of functional observations, heteroscedastic ANOVA for functional data, and testing equality of covariance functions. Although the methodologies presented are designed for curve data, they can be extended to surface data. Useful for statistical researchers and practitioners analyzing functional data, this self-contained book gives both a theoretical and applied treatment of functional data analysis supported by easy-to-use MATLAB® code. The author provides a number of simple methods for functional hypothesis testing. He discusses pointwise, L2-norm-based, F-type, and bootstrap tests. Assuming only basic knowledge of statistics, calculus, and matrix algebra, the book explains the key ideas at a relatively low technical level using real data examples. Each chapter also includes bibliographical notes and exercises. Real functional data sets from the text and MATLAB codes for analyzing the data examples are available for download from the author’s website.
Functional Data Analysis with R and MATLAB
Author: James Ramsay
Publisher: Springer Science & Business Media
ISBN: 0387981853
Category : Computers
Languages : en
Pages : 213
Book Description
The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Publisher: Springer Science & Business Media
ISBN: 0387981853
Category : Computers
Languages : en
Pages : 213
Book Description
The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Functional Data Analysis
Author: James Ramsay
Publisher: Springer Science & Business Media
ISBN: 147577107X
Category : Mathematics
Languages : en
Pages : 317
Book Description
Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.
Publisher: Springer Science & Business Media
ISBN: 147577107X
Category : Mathematics
Languages : en
Pages : 317
Book Description
Included here are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drawn from growth analysis, meteorology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, applied data analysts, and to experienced researchers; and as such is of value both within statistics and across a broad spectrum of other fields. Much of the material appears here for the first time.
Geostatistical Functional Data Analysis
Author: Jorge Mateu
Publisher: John Wiley & Sons
ISBN: 1119387841
Category : Social Science
Languages : en
Pages : 452
Book Description
Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Publisher: John Wiley & Sons
ISBN: 1119387841
Category : Social Science
Languages : en
Pages : 452
Book Description
Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Nonparametric Functional Data Analysis
Author: Frédéric Ferraty
Publisher: Springer Science & Business Media
ISBN: 0387366202
Category : Mathematics
Languages : en
Pages : 260
Book Description
Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Publisher: Springer Science & Business Media
ISBN: 0387366202
Category : Mathematics
Languages : en
Pages : 260
Book Description
Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators
Author: Tailen Hsing
Publisher: John Wiley & Sons
ISBN: 0470016914
Category : Mathematics
Languages : en
Pages : 363
Book Description
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.
Publisher: John Wiley & Sons
ISBN: 0470016914
Category : Mathematics
Languages : en
Pages : 363
Book Description
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.
Analysis of Variance and Functional Measurement
Author: David J. Weiss
Publisher: Oxford University Press
ISBN: 0195183150
Category : Mathematics
Languages : en
Pages : 278
Book Description
This book is a clear and straightforward guide to analysis of variance, the backbone of experimental research. It will show you how to interpret statistical results and translate them into prose that will clearly tell your audience what your data is saying. To help you become familiar with the techniques used in analysis of variance, there are plenty of end-of-chapter practice problems with suggested answers. As life in the laboratory doesnt always follow a script, there are both new and established techniques for coping with situations that deviate from the norm. Data analysis is not a closed subject, so there are pros and cons for the varied situations you will encounter. The final chapter gives the first elementary presentation of functional measurement, or information integration theory, a methodology built upon analysis of variance that is a powerful technique for studying cognitive processes. The accompanying CD contains CALSTAT, analysis of variance software that is easy to use (really!). In addition to programs for standard analysis, the software includes several specialized routines that have heretofore been presented only in journals. Analysis of Variance is an important resource for students and professionals in the social, behavioral, and neurosciences.
Publisher: Oxford University Press
ISBN: 0195183150
Category : Mathematics
Languages : en
Pages : 278
Book Description
This book is a clear and straightforward guide to analysis of variance, the backbone of experimental research. It will show you how to interpret statistical results and translate them into prose that will clearly tell your audience what your data is saying. To help you become familiar with the techniques used in analysis of variance, there are plenty of end-of-chapter practice problems with suggested answers. As life in the laboratory doesnt always follow a script, there are both new and established techniques for coping with situations that deviate from the norm. Data analysis is not a closed subject, so there are pros and cons for the varied situations you will encounter. The final chapter gives the first elementary presentation of functional measurement, or information integration theory, a methodology built upon analysis of variance that is a powerful technique for studying cognitive processes. The accompanying CD contains CALSTAT, analysis of variance software that is easy to use (really!). In addition to programs for standard analysis, the software includes several specialized routines that have heretofore been presented only in journals. Analysis of Variance is an important resource for students and professionals in the social, behavioral, and neurosciences.
Introduction to Functional Data Analysis
Author: Piotr Kokoszka
Publisher: CRC Press
ISBN: 1498746691
Category : Mathematics
Languages : en
Pages : 371
Book Description
Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Publisher: CRC Press
ISBN: 1498746691
Category : Mathematics
Languages : en
Pages : 371
Book Description
Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.