Quasilinear Elliptic Equations with Degenerations and Singularities

Quasilinear Elliptic Equations with Degenerations and Singularities PDF Author: Pavel Drábek
Publisher: Walter de Gruyter
ISBN: 3110804778
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.

Quasilinear Elliptic Equations with Degenerations and Singularities

Quasilinear Elliptic Equations with Degenerations and Singularities PDF Author: Pavel Drábek
Publisher: Walter de Gruyter
ISBN: 3110804778
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.

Analysis of Singularities for Partial Differential Equations

Analysis of Singularities for Partial Differential Equations PDF Author: Shuxing Chen
Publisher: World Scientific
ISBN: 9814304832
Category : Mathematics
Languages : en
Pages : 207

Get Book Here

Book Description
The book provides a comprehensive overview on the theory on analysis of singularities for partial differential equations (PDEs). It contains a summarization of the formation, development and main results on this topic. Some of the author's discoveries and original contributions are also included, such as the propagation of singularities of solutions to nonlinear equations, singularity index and formation of shocks.

Nonlinear Second Order Elliptic Equations Involving Measures

Nonlinear Second Order Elliptic Equations Involving Measures PDF Author: Moshe Marcus
Publisher: Walter de Gruyter
ISBN: 3110305313
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
In the last 40 years semi-linear elliptic equations became a central subject of study in the theory of nonlinear partial differential equations. On the one hand, the interest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis, dynamical systems, differential geometry and probability. On the other hand, this study is of interest because of its applications. Equations of this type come up in various areas such as problems of physics and astrophysics, curvature problems in Riemannian geometry, logistic problems related for instance to population models and, most importantly, the study of branching processes and superdiffusions in the theory of probability. The aim of this book is to present a comprehensive study of boundary value problems for linear and semi-linear second order elliptic equations with measure data. We are particularly interested in semi-linear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role. This book is accessible to graduate students and researchers with a background in real analysis and partial differential equations.

Elliptic Boundary Value Problems in Domains with Point Singularities

Elliptic Boundary Value Problems in Domains with Point Singularities PDF Author: Vladimir Kozlov
Publisher: American Mathematical Soc.
ISBN: 0821807544
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Lebesgue and Sobolev Spaces with Variable Exponents

Lebesgue and Sobolev Spaces with Variable Exponents PDF Author: Lars Diening
Publisher: Springer
ISBN: 3642183638
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.

Elliptic Problems in Nonsmooth Domains

Elliptic Problems in Nonsmooth Domains PDF Author: Pierre Grisvard
Publisher: SIAM
ISBN: 1611972027
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Originally published: Boston: Pitman Advanced Pub. Program, 1985.

A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials

A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials PDF Author: Florica C. Cîrstea
Publisher: American Mathematical Soc.
ISBN: 0821890220
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
In particular, for b = 1 and λ = 0, we find a sharp condition on h such that the origin is a removable singularity for all non-negative solutions of [[eqref]]one, thus addressing an open question of Vázquez and Véron.

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations

Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations PDF Author: Vladimir Kozlov
Publisher: American Mathematical Soc.
ISBN: 0821827278
Category : Mathematics
Languages : en
Pages : 449

Get Book Here

Book Description
This book focuses on the analysis of eigenvalues and eigenfunctions that describe singularities of solutions to elliptic boundary value problems in domains with corners and edges. The authors treat both classical problems of mathematical physics and general elliptic boundary value problems. The volume is divided into two parts: The first is devoted to the power-logarithmic singularities of solutions to classical boundary value problems of mathematical physics. The second deals with similar singularities for higher order elliptic equations and systems. Chapter 1 collects basic facts concerning operator pencils acting in a pair of Hilbert spaces. Related properties of ordinary differential equations with constant operator coefficients are discussed and connections with the theory of general elliptic boundary value problems in domains with conic vertices are outlined. New results are presented. Chapter 2 treats the Laplace operator as a starting point and a model for the subsequent study of angular and conic singularities of solutions. Chapter 3 considers the Dirichlet boundary condition beginning with the plane case and turning to the space problems. Chapter 4 investigates some mixed boundary conditions. The Stokes system is discussed in Chapters 5 and 6, and Chapter 7 concludes with the Dirichlet problem for the polyharmonic operator. Chapter 8 studies the Dirichlet problem for general elliptic differential equations of order 2m in an angle. In Chapter 9, an asymptotic formula for the distribution of eigenvalues of operator pencils corresponding to general elliptic boundary value problems in an angle is obtained. Chapters 10 and 11 discuss the Dirichlet problem for elliptic systems of differential equations of order 2 in an n-dimensional cone. Chapter 12 studies the Neumann problem for general elliptic systems, in particular with eigenvalues of the corresponding operator pencil in the strip $\mid {\Re} \lambda - m + /2n \mid \leq 1/2$. It is shown that only integer numbers contained in this strip are eigenvalues. Applications are placed within chapter introductions and as special sections at the end of chapters. Prerequisites include standard PDE and functional analysis courses.

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane PDF Author: Kari Astala
Publisher: Princeton University Press
ISBN: 1400830117
Category : Mathematics
Languages : en
Pages : 696

Get Book Here

Book Description
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Pseudo-Differential Operators on Manifolds with Singularities

Pseudo-Differential Operators on Manifolds with Singularities PDF Author: B.-W. Schulze
Publisher: Elsevier
ISBN: 0080875459
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
The analysis of differential equations in domains and on manifolds with singularities belongs to the main streams of recent developments in applied and pure mathematics. The applications and concrete models from engineering and physics are often classical but the modern structure calculus was only possible since the achievements of pseudo-differential operators. This led to deep connections with index theory, topology and mathematical physics.The present book is devoted to elliptic partial differential equations in the framework of pseudo-differential operators. The first chapter contains the Mellin pseudo-differential calculus on R+ and the functional analysis of weighted Sobolev spaces with discrete and continuous asymptotics. Chapter 2 is devoted to the analogous theory on manifolds with conical singularities, Chapter 3 to manifolds with edges. Employed are pseudo-differential operators along edges with cone-operator-valued symbols.