Author: J.L. Schafer
Publisher: CRC Press
ISBN: 9781439821862
Category : Mathematics
Languages : en
Pages : 470
Book Description
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Analysis of Incomplete Multivariate Data
Author: J.L. Schafer
Publisher: CRC Press
ISBN: 9781439821862
Category : Mathematics
Languages : en
Pages : 470
Book Description
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Publisher: CRC Press
ISBN: 9781439821862
Category : Mathematics
Languages : en
Pages : 470
Book Description
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Analysis of Incomplete Multivariate Data
Author: J.L. Schafer
Publisher: Chapman and Hall/CRC
ISBN: 9780412040610
Category : Mathematics
Languages : en
Pages : 444
Book Description
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Publisher: Chapman and Hall/CRC
ISBN: 9780412040610
Category : Mathematics
Languages : en
Pages : 444
Book Description
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Statistical Analysis with Missing Data
Author: Roderick J. A. Little
Publisher: John Wiley & Sons
ISBN: 1118595696
Category : Mathematics
Languages : en
Pages : 444
Book Description
An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.
Publisher: John Wiley & Sons
ISBN: 1118595696
Category : Mathematics
Languages : en
Pages : 444
Book Description
An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.
Flexible Imputation of Missing Data, Second Edition
Author: Stef van Buuren
Publisher: CRC Press
ISBN: 0429960352
Category : Mathematics
Languages : en
Pages : 444
Book Description
Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.
Publisher: CRC Press
ISBN: 0429960352
Category : Mathematics
Languages : en
Pages : 444
Book Description
Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.
The Prevention and Treatment of Missing Data in Clinical Trials
Author: National Research Council
Publisher: National Academies Press
ISBN: 030918651X
Category : Medical
Languages : en
Pages : 163
Book Description
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Publisher: National Academies Press
ISBN: 030918651X
Category : Medical
Languages : en
Pages : 163
Book Description
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Hierarchical Modelling of Discrete Longitudinal Data
Author: Leonhard Held
Publisher: Herbert Utz Verlag
ISBN: 9783896752055
Category : Longitudinal method
Languages : en
Pages : 156
Book Description
Publisher: Herbert Utz Verlag
ISBN: 9783896752055
Category : Longitudinal method
Languages : en
Pages : 156
Book Description
Applied Missing Data Analysis
Author: Craig K. Enders
Publisher: Guilford Publications
ISBN: 1462549861
Category : Business & Economics
Languages : en
Pages : 563
Book Description
"The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website includes datasets and analysis examples from the book, up-to-date software information, and other resources. Subject areas/Key words: advanced quantitative methods, management, survey, longitudinal, structural equation modeling, handling, how to handle, incomplete, multivariate, social research, behavioral sciences, statistical techniques, textbooks, seminars, doctoral courses, multiple imputation, models, MCAR, MNAR, Bayesian Audience: Researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science"--
Publisher: Guilford Publications
ISBN: 1462549861
Category : Business & Economics
Languages : en
Pages : 563
Book Description
"The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website includes datasets and analysis examples from the book, up-to-date software information, and other resources. Subject areas/Key words: advanced quantitative methods, management, survey, longitudinal, structural equation modeling, handling, how to handle, incomplete, multivariate, social research, behavioral sciences, statistical techniques, textbooks, seminars, doctoral courses, multiple imputation, models, MCAR, MNAR, Bayesian Audience: Researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science"--
Handbook of Missing Data Methodology
Author: Geert Molenberghs
Publisher: CRC Press
ISBN: 1439854610
Category : Mathematics
Languages : en
Pages : 600
Book Description
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
Publisher: CRC Press
ISBN: 1439854610
Category : Mathematics
Languages : en
Pages : 600
Book Description
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
Multi- and Megavariate Data Analysis Basic Principles and Applications
Author: L. Eriksson
Publisher: Umetrics Academy
ISBN: 9197373052
Category : Mathematics
Languages : en
Pages : 509
Book Description
To understand the world around us, as well as ourselves, we need to measure many things, many variables, many properties of the systems and processes we investigate. Hence, data collected in science, technology, and almost everywhere else are multivariate, a data table with multiple variables measured on multiple observations (cases, samples, items, process time points, experiments). This book describes a remarkably simple minimalistic and practical approach to the analysis of data tables (multivariate data). The approach is based on projection methods, which are PCA (principal components analysis), and PLS (projection to latent structures) and the book shows how this works in science and technology for a wide variety of applications. In particular, it is shown how the great information content in well collected multivariate data can be expressed in terms of simple but illuminating plots, facilitating the understanding and interpretation of the data. The projection approach applies to a variety of data-analytical objectives, i.e., (i) summarizing and visualizing a data set, (ii) multivariate classification and discriminant analysis, and (iii) finding quantitative relationships among the variables. This works with any shape of data table, with many or few variables (columns), many or few observations (rows), and complete or incomplete data tables (missing data). In particular, projections handle data matrices with more variables than observations very well, and the data can be noisy and highly collinear. Authors: The five authors are all connected to the Umetrics company (www.umetrics.com) which has developed and sold software for multivariate analysis since 1987, as well as supports customers with training and consultations. Umetrics' customers include most large and medium sized companies in the pharmaceutical, biopharm, chemical, and semiconductor sectors.
Publisher: Umetrics Academy
ISBN: 9197373052
Category : Mathematics
Languages : en
Pages : 509
Book Description
To understand the world around us, as well as ourselves, we need to measure many things, many variables, many properties of the systems and processes we investigate. Hence, data collected in science, technology, and almost everywhere else are multivariate, a data table with multiple variables measured on multiple observations (cases, samples, items, process time points, experiments). This book describes a remarkably simple minimalistic and practical approach to the analysis of data tables (multivariate data). The approach is based on projection methods, which are PCA (principal components analysis), and PLS (projection to latent structures) and the book shows how this works in science and technology for a wide variety of applications. In particular, it is shown how the great information content in well collected multivariate data can be expressed in terms of simple but illuminating plots, facilitating the understanding and interpretation of the data. The projection approach applies to a variety of data-analytical objectives, i.e., (i) summarizing and visualizing a data set, (ii) multivariate classification and discriminant analysis, and (iii) finding quantitative relationships among the variables. This works with any shape of data table, with many or few variables (columns), many or few observations (rows), and complete or incomplete data tables (missing data). In particular, projections handle data matrices with more variables than observations very well, and the data can be noisy and highly collinear. Authors: The five authors are all connected to the Umetrics company (www.umetrics.com) which has developed and sold software for multivariate analysis since 1987, as well as supports customers with training and consultations. Umetrics' customers include most large and medium sized companies in the pharmaceutical, biopharm, chemical, and semiconductor sectors.
Multiple Imputation of Missing Data Using SAS
Author: Patricia Berglund
Publisher: SAS Institute
ISBN: 162959203X
Category : Computers
Languages : en
Pages : 328
Book Description
Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.
Publisher: SAS Institute
ISBN: 162959203X
Category : Computers
Languages : en
Pages : 328
Book Description
Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.