Analysis and Prediction of Patterns in Lichen Communities Over the Western Oregon Landscape

Analysis and Prediction of Patterns in Lichen Communities Over the Western Oregon Landscape PDF Author: Eric B. Peterson
Publisher:
ISBN:
Category : Forest ecology
Languages : en
Pages : 280

Get Book Here

Book Description
The diverse lichen flora of the Pacific Northwest is being impacted by population growth and by forest management practices. Accumulating information about our lichen flora will improve our conservation strategies. This dissertation first collects information to improve our understanding of how lichen communities vary among forests of differing structure, and across the western Oregon landscape. It then proposes a method to predict species occurrence in unsampled sites by utilizing the information on forest characters and environmental gradients at sampled sites. Macrolichen communities sampled in coniferous forests revealed that old-growth stands (>200 yrs old) harbored communities that differed from those in young forests (50-110 yrs old). Even more atypical communities occurred in macrolichen hotspots, which were primarily in riparian zones. Many macrolichen species were associated with these hotspots, including numerous nitrogen-fixing cyanolichens. Macrolichen species associated with old-growth forested plots included the nitrogen-fixing lichen Lobaria oregana and several forage-providing alectorioid lichens. The presence of remnant old trees apparently increased the occurrence of old-growth associates in young stands. The calicioids, a group of microlichens investigated only in the Cascades, had a strong association with old growth forest and remnant trees. Diversity of calicioids may also be increased by legacy structures such as old snags and wolf trees. These structures increase continuity between current and previous stands. Macrolichen communities varied between the Coast and Cascade Mountain Ranges, following climatic gradients, particularly annual precipitation. Successional patterns in macrolichen communities appeared to differ between the mountain ranges. The modeling method proposed for using habitat associations to predict occurrence has several advantages over common modeling methods, such as regression. The method is simple, avoids parametric assumptions, provides easy updating of models as additional sites are sampled, and automatically accounts for interactions among predictor variables. It can be linked with GIS data and software to map estimated probability of occurrence across landscapes. The data on calicioids from the Cascades, supplemented with additional stand inventories, were used to test and demonstrate the modeling method.

Analysis and Prediction of Patterns in Lichen Communities Over the Western Oregon Landscape

Analysis and Prediction of Patterns in Lichen Communities Over the Western Oregon Landscape PDF Author: Eric B. Peterson
Publisher:
ISBN:
Category : Forest ecology
Languages : en
Pages : 280

Get Book Here

Book Description
The diverse lichen flora of the Pacific Northwest is being impacted by population growth and by forest management practices. Accumulating information about our lichen flora will improve our conservation strategies. This dissertation first collects information to improve our understanding of how lichen communities vary among forests of differing structure, and across the western Oregon landscape. It then proposes a method to predict species occurrence in unsampled sites by utilizing the information on forest characters and environmental gradients at sampled sites. Macrolichen communities sampled in coniferous forests revealed that old-growth stands (>200 yrs old) harbored communities that differed from those in young forests (50-110 yrs old). Even more atypical communities occurred in macrolichen hotspots, which were primarily in riparian zones. Many macrolichen species were associated with these hotspots, including numerous nitrogen-fixing cyanolichens. Macrolichen species associated with old-growth forested plots included the nitrogen-fixing lichen Lobaria oregana and several forage-providing alectorioid lichens. The presence of remnant old trees apparently increased the occurrence of old-growth associates in young stands. The calicioids, a group of microlichens investigated only in the Cascades, had a strong association with old growth forest and remnant trees. Diversity of calicioids may also be increased by legacy structures such as old snags and wolf trees. These structures increase continuity between current and previous stands. Macrolichen communities varied between the Coast and Cascade Mountain Ranges, following climatic gradients, particularly annual precipitation. Successional patterns in macrolichen communities appeared to differ between the mountain ranges. The modeling method proposed for using habitat associations to predict occurrence has several advantages over common modeling methods, such as regression. The method is simple, avoids parametric assumptions, provides easy updating of models as additional sites are sampled, and automatically accounts for interactions among predictor variables. It can be linked with GIS data and software to map estimated probability of occurrence across landscapes. The data on calicioids from the Cascades, supplemented with additional stand inventories, were used to test and demonstrate the modeling method.

Managing for Biodiversity in Young Douglas-fir Forests of Western Oregon

Managing for Biodiversity in Young Douglas-fir Forests of Western Oregon PDF Author:
Publisher:
ISBN:
Category : Biodiversity
Languages : en
Pages : 92

Get Book Here

Book Description


Proceedings RMRS.

Proceedings RMRS. PDF Author:
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 204

Get Book Here

Book Description


Proceedings--shrublands under fire

Proceedings--shrublands under fire PDF Author:
Publisher:
ISBN:
Category : Range management
Languages : en
Pages : 202

Get Book Here

Book Description


Acta Botanica Fennica

Acta Botanica Fennica PDF Author:
Publisher:
ISBN:
Category : Botany
Languages : en
Pages : 150

Get Book Here

Book Description


Lichen Response to the Environment and Forest Structure in the Western Cascades of Oregon

Lichen Response to the Environment and Forest Structure in the Western Cascades of Oregon PDF Author: Erin P. Martin
Publisher:
ISBN:
Category : Lichen communities
Languages : en
Pages : 338

Get Book Here

Book Description
Lichens are an important part of the biota in western Oregon forests, where they perform valuable ecological roles and contribute significantly to biodiversity. Lichens in western Oregon are threatened by a number of factors including air pollution and land use practices. If we wish to maintain the persistence of lichens in future landscapes it is critical that we understand the responses of lichen communities and individual lichen species to the environment and forest structure. This dissertation explores factors that are related to differences in lichen community composition and the distributions of individual lichen species in the western Cascades of Oregon, using a large landscape scale data set. I sought to relate major gradients in lichen community composition to environmental factors, and describe differences in lichen communities with respect to forest age (Chapter 2). I found three major gradients in lichen communities at a landscape scale in the western Oregon Cascades. These gradients were related to climate as expressed by elevation and annual temperature, air quality, north-south position, the richness of epiphytic macrolichens, and forest age. I developed a rarity score, which can be used to identify hotspots of rare species diversity at a landscape scale (Chapter 3). I then built descriptive models of this rarity score to identify abiotic and biotic factors associated with the occurrence of rarity hotspots. I found that models of rarity score that used explanatory variables based on lichen community composition performed better than models that used explanatory variables based solely on environmental factors. I narrowed my focus to the level of individual species responses to the environment and forest structure by developing habitat models for 11 lichen species in the western Cascades (Chapter 4). We selected these species because they performed important ecological roles, were rare across the landscape and associated with old growth forests, or because their distributions were poorly understood. These models can be used to increase the efficiency of landscape level surveys for rare species, predict the response of these species to forest management practices, and understand factors associated with the distributions of these lichens.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 830

Get Book Here

Book Description


Epiphytic Macrolichens in Relation to Forest Management and Topography in a Western Oregon Watershed

Epiphytic Macrolichens in Relation to Forest Management and Topography in a Western Oregon Watershed PDF Author: Shanti D. Berryman
Publisher:
ISBN:
Category : Epiphytic lichens
Languages : en
Pages : 306

Get Book Here

Book Description
This dissertation describes patterns in epiphytic macrolichen community composition, diversity, and biomass across various stand types in the Blue River watershed of western Oregon. It first examines the relative importance of ecological factors such as stand age, remnant tree retention, and topography to lichen communities in the landscape. It then develops models for estimating epiphytic macrolichen biomass and uses these models to assess potential impacts of forest management strategies on future lichen biomass in the watershed. Epiphytic macrolichen communities were sampled in 117 coniferous stands in uplands and riparian areas. Stands were typed by stand age (young, 20; pole, 21-80; mature, 81-200; and old-growth,200 yrs) and by the degree of remnant tree retention (older trees that survived the most recent disturbance). Lichen biomass (oven-dried, kg/ha) was estimated for three functional groups: nitrogen-fixing cyanolichens, forage lichens, and matrix lichens in 63 of the 117 stands. Elevation was the leading factor related to differences in macrolichen communities and biomass. Cyanolichens (dominated by Lobaria oregana) were largely limited to lower elevations and were most abundant in old growth (median 1,377 kg/ha). Lichen community composition changed with stand age. Remnant presence was related only to lichen community differences in young stands. Lichen biomass increased with stand age and with remnant retention. Stands along perennial streams were cyanolichen hotspots compared to uplands. Lichen biomass was unrelated to uplands and riparian areas. Regression models estimating lichen biomass by functional group were developed from topography, stand structure, and lichen communities. The model for cyanolichen biomass had the strongest predictive power (R2= 0.85), whereas models for forage and matrix lichen biomass were less powerful (R2 = 0.55 and R2 = 0.58, respectively). We estimated cyanolichen and forage lichen biomass in the present watershed and forecasted lichen biomass in 200 yrs for two different management scenarios: the Landscape Plan (LP) and the Northwest Forest Plan (NWFP). Under both scenarios, lichen biomass was predicted to increase substantially from current levels due to increased remnant tree retention and the elimination of clear-cutting. The LP scenario yielded 12% higher forage lichen biomass and 8% higher cyanolichen biomass than the NWFP.

American Doctoral Dissertations

American Doctoral Dissertations PDF Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 816

Get Book Here

Book Description


Lichen Biomonitoring in Southeast Alaska and Western Oregon

Lichen Biomonitoring in Southeast Alaska and Western Oregon PDF Author: Chiska C. Derr
Publisher:
ISBN:
Category : Lichens
Languages : en
Pages : 196

Get Book Here

Book Description
Lichen sensitivity to air quality has been recognized in Europe for over 125 years: recently Federal agencies in this country have begun using lichens as air quality bioindicators. This study presents the results of three different approaches to air quality biomonitoring using lichens: (1) a lichen community analysis, (2) an elemental analysis of lichen tissue content, and (3) the growth of removable lichen transplants. The lichen community and elemental tissue content analyses were part of an air quality baseline on the Tongass National Forest in southeast Alaska. The lichen transplant experiment compared the growth of three different lichen species and evaluated and refined a transplant technique in western Oregon. Lichen communities were sampled on 50 Pinus contorta peatlands in southeast Alaska. These peatlands make good air quality biomonitoring sites because: (1) the trees are slow growing and provide stable substrates for lichen colonization; (2) many branches are at eye level, making the canopy epiphytes easily observable; (3) the scattered, open distribution of the trees allows for good air circulation on the sites; and (4) precipitation, light conditions, and relative humidity are high, which stimulate lichen growth. A total of 100 lichen species were encountered during whole-plot ocular surveys of each plot. Multivariate ordination revealed what appears to be a successional gradient represented by high cover of Bryoria species at older sites and high cover of Platismatia norvegica, P. glauca, Hypogymnia enteromorpha sens. lat. and H. inactiva at younger sites. A second pattern revealed by ordination analysis appears to be a climatic gradient with high Alectoria sarmentosa cover on moister, warmer sites, and high cover of Bryoria species on drier, colder sites. The first two gradients contained 35% and 21%, respectively, of the information in the analytical data set (cumulative r2=56%). Elemental tissue content of Alectoria sarmentosa was determined from 43 of the peatland plots in southeast Alaska. The range of values for 16 elements are reported and compared to other regional studies; the ranges of values for most elements were within normal background levels. Quality assurance techniques are described for separation of laboratory and field noise from elemental content signal. Principal components analysis was used to create three synthetic gradients of plot-level elemental content. The first three principal components captured 55% of the correlation structure among elements. Iron (r=-0.91), aluminum (r=-0.80) and chromium (r=-0.71) are all highly correlated with the first gradient. This gradient could represent sites enriched by elements from dirt; aluminum and iron silicates are both persistent and abundant components of weathered rock and soil. Potassium (r=-0.82), phosphorous (r=-0.63), zinc (r=-0.60), manganese (r=-0.58), magnesium (r=-0.51) and nickel (r=0.54) are correlated with the second gradient. Many of these elements are supplemented by salt water aerosols (Nieboer et al. 1978; Rhoades 1988). Lead (r=0.70) and cadmium (r=0.59) were correlated with the third axis. This gradients could represent enrichment from fossil fuel combustion. Recommendations for standardizing future regional studies of lichen elemental content are made. Removable lichen transplants were constructed using live thalli of known weight, a 5 cm length of nylon monofilament, silicone glue, and reusable attachment mechanisms. Transplants were returned to several sites in Western Oregon and were weighed every several months for 13 months. Reference standards for each species were used to correct for changes in lichen water content due to changes in lab humidity. Despite apparent vigor, Alectoria proved unsuitable for repeated weighings because of biomass loss due to fragmentation (average of 9% biomass loss). Growth of Evernia and Lobaria transplants differed both between species and between sites. Average growth over the 13 months for Evernia in the foothills and valley was 40% and 30% respectively; for Lobaria it was 16% and 15%. Differences in growth between species could be due to different: (1) growth rates; (2) sensitivities to air quality; (3) sensitivities to microhabitat; and (4) sensitivities to transplant trauma. Differences in growth between valley and foothill sites could be due to differences in: (1) micro- or macrohabitat conditions; and (2) air quality.