Analysis and Improvement of Medium Access Control Protocols in Wireless Networks

Analysis and Improvement of Medium Access Control Protocols in Wireless Networks PDF Author: Jia Hu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In order to efficiently utilize the scarce wireless resource as well as keep up with the ever-increasing demand for Quality-of-Service (QoS) of multimedia applications, wireless networks are undergoing rapid development and dramatic changes in the underlying technologies and protocols. The Medium Access Control (MAC) protocol, which coordinates the channel access and data transmission of wireless stations, plays a pivotal role in wireless networks. Performance modelling and analysis has been and continues to be of great theoretical and practical importance in the design and development of wireless networks. This research is devoted to developing efficient and cost-effective analytical tools for the performance analysis and enhancement of MAC protocols in Wireless Local Area Networks (WLANs) under heterogeneous multimedia traffic. To support the MAC-layer QoS in WLANs, the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has proposed three QoS differentiation schemes in terms of Arbitrary Inter-Frame Space (AIFS), Contention Window (CW), and Transmission Opportunity (TXOP). This research starts with the development of new analytical models for the TXOP scheme specified in the EDCA protocol under Poisson traffic. A dynamic TXOP scheme is then proposed to adjust the TXOP limits according to the status of the transmission queue. Theoretical analysis and simulation experiments show that the proposed dynamic scheme largely improves the performance of TXOP. To evaluate the TXOP scheme in the presence of ii heterogeneous traffic, a versatile analytical model is developed to capture the traffic heterogeneity and model the features of burst transmission. The performance results highlight the importance of taking into account the heterogeneous traffic for the accurate evaluation of the TXOP scheme in wireless multimedia networks. To obtain a thorough and deep understanding of the performance attributes of the EDCA protocol, a comprehensive analytical model is then proposed to accommodate the integration of the three QoS schemes of EDCA in terms of AIFS, CW, and TXOP under Poisson traffic. The performance results show that the TXOP scheme can not only support service differentiation but also improve the network performance, whereas the AIFS and CW schemes provide QoS differentiation only. Moreover, the results demonstrate that the MAC buffer size has considerable impact on the QoS performance of EDCA under Poisson traffic. To investigate the performance of EDCA in wireless multimedia networks, an analytical model is further developed for EDCA under heterogeneous traffic. The performance results demonstrate the significant effects of heterogeneous traffic on the total delay and frame losses of EDCA with different buffer sizes. Finally, an efficient admission control scheme is presented for the IEEE 802.11e WLANs based on analytical modelling and a game-theoretical approach. The admission control scheme can maintain the system operation at an optimal point where the utility of the Access Point (AP) is maximized with the QoS constraints of various users.

Analysis and Improvement of Medium Access Control Protocols in Wireless Networks

Analysis and Improvement of Medium Access Control Protocols in Wireless Networks PDF Author: Jia Hu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In order to efficiently utilize the scarce wireless resource as well as keep up with the ever-increasing demand for Quality-of-Service (QoS) of multimedia applications, wireless networks are undergoing rapid development and dramatic changes in the underlying technologies and protocols. The Medium Access Control (MAC) protocol, which coordinates the channel access and data transmission of wireless stations, plays a pivotal role in wireless networks. Performance modelling and analysis has been and continues to be of great theoretical and practical importance in the design and development of wireless networks. This research is devoted to developing efficient and cost-effective analytical tools for the performance analysis and enhancement of MAC protocols in Wireless Local Area Networks (WLANs) under heterogeneous multimedia traffic. To support the MAC-layer QoS in WLANs, the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has proposed three QoS differentiation schemes in terms of Arbitrary Inter-Frame Space (AIFS), Contention Window (CW), and Transmission Opportunity (TXOP). This research starts with the development of new analytical models for the TXOP scheme specified in the EDCA protocol under Poisson traffic. A dynamic TXOP scheme is then proposed to adjust the TXOP limits according to the status of the transmission queue. Theoretical analysis and simulation experiments show that the proposed dynamic scheme largely improves the performance of TXOP. To evaluate the TXOP scheme in the presence of ii heterogeneous traffic, a versatile analytical model is developed to capture the traffic heterogeneity and model the features of burst transmission. The performance results highlight the importance of taking into account the heterogeneous traffic for the accurate evaluation of the TXOP scheme in wireless multimedia networks. To obtain a thorough and deep understanding of the performance attributes of the EDCA protocol, a comprehensive analytical model is then proposed to accommodate the integration of the three QoS schemes of EDCA in terms of AIFS, CW, and TXOP under Poisson traffic. The performance results show that the TXOP scheme can not only support service differentiation but also improve the network performance, whereas the AIFS and CW schemes provide QoS differentiation only. Moreover, the results demonstrate that the MAC buffer size has considerable impact on the QoS performance of EDCA under Poisson traffic. To investigate the performance of EDCA in wireless multimedia networks, an analytical model is further developed for EDCA under heterogeneous traffic. The performance results demonstrate the significant effects of heterogeneous traffic on the total delay and frame losses of EDCA with different buffer sizes. Finally, an efficient admission control scheme is presented for the IEEE 802.11e WLANs based on analytical modelling and a game-theoretical approach. The admission control scheme can maintain the system operation at an optimal point where the utility of the Access Point (AP) is maximized with the QoS constraints of various users.

Design and Analysis of Energy-efficient Media Access Control Protocols in Wireless Sensor Networks

Design and Analysis of Energy-efficient Media Access Control Protocols in Wireless Sensor Networks PDF Author: Ibrahim Ammer Musbah Ammar
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Position Location Techniques and Applications

Position Location Techniques and Applications PDF Author: David Munoz
Publisher: Academic Press
ISBN: 0080921930
Category : Technology & Engineering
Languages : en
Pages : 297

Get Book Here

Book Description
This book is the definitive guide to the techniques and applications of position location, covering both terrestrial and satellite systems. It gives all the techniques, theoretical models, and algorithms that engineers need to improve their current location schemes and to develop future location algorithms and systems. Comprehensive coverage is given to system design trade-offs, complexity issues, and the design of efficient positioning algorithms to enable the creation of high-performance location positioning systems. Traditional methods are also reexamined in the context of the challenges posed by reconfigurable and multihop networks. Applications discussed include wireless networks (WiFi, ZigBee, UMTS, and DVB networks), cognitive radio, sensor networks and multihop networks. Features - Contains a complete guide to models, techniques, and applications of position location - Includes applications to wireless networks, demonstrating the relevance of location positioning to these "hot" areas in research and development - Covers system design trade-offs and the design of efficient positioning algorithms, enabling the creation of future location positioning systems - Provides a theoretical underpinning for understanding current position location algorithms, giving researchers a foundation to develop future algorithms David Muñoz is Director and César Vargas is a member of the Center for Electronics and Telecommunications, Tecnológico de Monterrey, Mexico. Frantz Bouchereau is a senior communications software developer at The MathWorks Inc. in Natick, MA. Rogerio Enríquez-Caldera is at Instituto Nacional de Atrofisica, Optica y Electronica (INAOE), Puebla, Mexico. - Contains a complete guide to models, techniques and applications of position location - Includes applications to wireless networks (WiFi, ZigBee, DVB networks), cognitive radio, sensor networks and reconfigurable and multi-hop networks, demonstrating the relevance of location positioning to these 'hot' areas in research and development - Covers system design trade-offs, and the design of efficient positioning algorithms enables the creation of future location positioning systems - Provides a theoretical underpinning for understanding current position location algorithms, giving researchers a foundation to develop future algorithms

Medium Access Control in Wireless Networks

Medium Access Control in Wireless Networks PDF Author: Hongyi Wu
Publisher: Nova Publishers
ISBN: 9781600219443
Category : Computers
Languages : en
Pages : 662

Get Book Here

Book Description
Wireless technologies and applications are becoming one of the fastest growing and most promising areas in recent years. To accommodate data transmission by multiple stations sharing the scarce wireless bandwidth, a medium access control (MAC) protocol plays a crucial role in scheduling packet transmission fairly and efficiently. The emerging wireless networks, such as ad-hoc networks, sensor networks or mesh networks, are mostly multi-hop based and in distributed manner, which brings a lot of problems and challenges in designing fine-tuned MAC protocols tailored for modern wireless network. In this book, the authors give complete and in-depth overviews to the classic medium access control algorithms and the related protocols, as well as their applications in various wireless data networks especially the most successful Wireless Local Area Networks (WLAN). The book consists of three major parts. Part I of this book, including Chapters 1-7, is emphasising on the fundamentals of medium access control algorithms and protocols. Chapter 1 provides an introduction to the wireless networks, such as overview of wireless networks, problems and challenges of the wireless networks, and the classifications of MAC protocols as well as the performance metrics. Chapter 2 introduces important collision resolution algorithms applied in medium access controls, for example, the splitting algorithm and the backoff algorithm. Chapter 3 reviews the hybrid access control algorithms that combine both contention and allocation schemes. A series of important collision avoidance schemes are introduced in Chapters 4-7 respectively, with a specific design goal covered in each chapter. Chapter 4 focuses on the multi-channel MAC protocols for collision avoidance; Chapter 5 introduces the concepts of power control and power management in medium access control and how they can be applied in MAC protocol design; Chapter 6 presents how to provide Quality-of- Service (QoS) to multimedia wireless networks, in either centralised or distributed manner; and Chapter 7 explains how the smart antennas can be applied in the medium access control to provide high channel throughput and low packet collision.

Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks

Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks PDF Author: Lin Cai
Publisher:
ISBN:
Category :
Languages : en
Pages : 169

Get Book Here

Book Description
The next-generation wireless networks are expected to integrate diverse network architectures and various wireless access technologies to provide a robust solution for ubiquitous broadband wireless access, such as wireless local area networks (WLANs), Ultra-Wideband (UWB), and millimeter-wave (mmWave) based wireless personal area networks (WPANs), etc. To enhance the spectral efficiency and link reliability, smart antenna systems have been proposed as a promising candidate for future broadband access networks. To effectively exploit the increased capabilities of the emerging wireless networks, the different network characteristics and the underlying physical layer features need to be considered in the medium access control (MAC) design, which plays a critical role in providing efficient and fair resource sharing among multiple users. In this thesis, we comprehensively investigate the MAC design in both single- and multi-hop broadband wireless networks, with and without infrastructure support.

Multiple Access Protocols

Multiple Access Protocols PDF Author: Raphael Rom
Publisher: Springer Science & Business Media
ISBN: 1461234026
Category : Technology & Engineering
Languages : en
Pages : 179

Get Book Here

Book Description
Computer communication networks have come of age. Today, there is hardly any professional, particularly in engineering, that has not been the user of such a network. This proliferation requires the thorough understanding of the behavior of networks by those who are responsible for their operation as well as by those whose task it is to design such networks. This is probably the reason for the large number of books, monographs, and articles treating relevant issues, problems, and solutions in this field. Among all computer network architectures, those based on broadcast mul tiple access channels stand out in their uniqueness. These networks appear naturally in environments requiring user mobility where the use of any fixed wiring is impossible and a wireless channel is the only available option. Because of their desirable characteristics multiple access networks are now used even in environments where a wired point-to-point network could have been installed. The understanding of the operation of multiple access network through their performance analysis is the focus of this book.

Protocol Design and Analysis for Cooperative Wireless Networks

Protocol Design and Analysis for Cooperative Wireless Networks PDF Author: Wei Song
Publisher: Springer
ISBN: 3319477269
Category : Technology & Engineering
Languages : en
Pages : 135

Get Book Here

Book Description
This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate the analysis and examine the performance under various conditions. The last section of this book reveals several potential directions for the research on cooperative wireless networks that deserve future exploration. Researchers, professionals, engineers, and consultants in wireless communication and mobile networks will find this book valuable. It is also helpful for technical staff in mobile network operations, wireless equipment manufacturers, wireless communication standardization bodies, and governmental regulation agencies.

Performance Analysis of Distributed MAC Protocols for Wireless Networks

Performance Analysis of Distributed MAC Protocols for Wireless Networks PDF Author: Xinhua Ling
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


High Performance Medium Access Control Protocols for Decentralized Wireless Networks Using Local Coordination

High Performance Medium Access Control Protocols for Decentralized Wireless Networks Using Local Coordination PDF Author:
Publisher:
ISBN: 9781109249194
Category : Wireless communication systems
Languages : en
Pages :

Get Book Here

Book Description
Wireless networks differ from their wired counterparts in that communication between nodes takes place over a "link" using an RF, acoustic, optical, or other signal transmitted through the air or water instead of, as their name implies, a wire. This difference changes the frequency of transmission errors from extremely rare to almost constant, and introduces inter-node interference as a significant problem. Wireless networks are typically more limited than wired networks in terms of bandwidth, computational ability, power, and centralized management. Efficient handling of transmission errors and reducing interference are thus vital in maximizing network performance. This dissertation addresses two separate aspects of wireless networks with a common theme of low overhead, local coordination between nodes, and often using inferences or even informed guesses to make decisions. To address the problem of transmission errors, we study two medium access control (MAC) protocols that use minimal-overhead, local coordination schemes to allow cooperation between neighboring nodes: one with and one without a cooperation-enabled physical layer. To address the problem of interference, we study two closely related MAC protocols that use local coordination between neighboring nodes to build an interference-free transmission schedule, for (1) supporting latency-sensitive applications over long routes in mesh networks, and (2) increasing channel utilization and energy efficiency in underwater acoustic networks. Our first work focuses on mobile ad hoc networks where if any link in a route fails, multiple fruitless attempts are currently made by most of the existing MAC protocols to use the failed link before reporting failure to the routing layer and/or attempting local recovery. The high frequency of link errors between mobile nodes requires rapid recovery to provide acceptable performance. We design CIFLER, a cross-layer approach which uses enhanced channel reservation messages to allow alternate nodes to immediately elect themselves using only inferred neighbor information. This self-election avoids reliance on individual links, and uses diversity to minimize the impact frequent link errors have on delay, energy efficiency, and the functioning of upper layer protocols. We show via both analysis and simulation that CIFLER provides better performance in typical MANET scenarios. Unlike other local recovery schemes, CIFLER uses only a minor modification to IEEE 802.11 DCF, does not suffer from duplicated messages, allows neighboring nodes to almost immediately learn the information needed to assist in the recovery of existing routes, and does not require additional hardware, delays, or control messages. Our second work applies the same concept of inferred neighbor information to cooperative communications, where the signals of simultaneous transmissions by multiple nodes constructively combine in the wireless medium. Studies on the physical layer capabilities (via either information theory or numerical analysis) have shown the significant performance improvements of cooperative communications. However, these studies ignore both the overheads incurred in real implementations of the cooperative techniques at the physical layer and their interactions with higher layer protocols in a networking context. We implement a path-centric MAC protocol that uses minimal control messages to reserve a multi-hop path between source and destination nodes, and perform coordination between relay nodes. We then realistically study the performance of cooperation in networking scenarios by taking into account overheads incurred at the physical, MAC, and network layers. Simulations demonstrate that significant performance improvement can be achieved by employing cooperation. We also demonstrate the overheads which challenge the effectiveness of such schemes in real networks. Our third work deals with the issue of interference and transmission scheduling in mesh networks, where links are generally reliable if no interference is present. In current wireless networks, access to the shared wireless medium is controlled via either a TDMA- or a CSMA-based scheme. While usable in single-hop networks, these techniques are often far from optimal, and result in significant per-hop and per-packet delay and jitter, making multi-hop wireless mesh networks a particularly harsh environment for real-time, isochronous applications such as VoIP. We present a new time-based MAC protocol, FLASHR, for wireless mesh networks carrying delay-sensitive isochronous traffic. In our scheme, nodes use simple local coordination mechanisms to form adaptive transmission schedules which attain the desired quality of service. Simulations show that our scheme achieves near-optimal capacity, minimal jitter, and a weaker correlation between route length and end-to-end delay. Our final work adapts the FLASHR MAC protocol for use in underwater acoustic networks. A time-based MAC has potential advantages over FDMA and CDMA approaches in terms of hardware simplicity, energy efficiency, and delay. Unfortunately, the channel utilization of existing TDMA and CSMA acoustic MAC protocols is generally low due to the long propagation delays of acoustic signals. We argue that several ideas taken from RF protocols, including exclusive channel access, are either unnecessary in acoustic networks or must be redefined. We design UW-FLASHR, a modification to FLASHR which uses additional local control messages to create a time-based MAC protocol for acoustic networks which does not require centralized control, tight clock synchronization, or accurate propagation delay estimation. Our results show that UWFLASHR achieves higher channel utilization than the maximum utilization possible with existing time-based exclusive-access MAC protocols, particularly when the ratio of propagation delay to transmission delay is high, or data payloads are small.

Analytical Modeling of Medium Access Control Protocols in Wireless Networks

Analytical Modeling of Medium Access Control Protocols in Wireless Networks PDF Author: Marcelo Menezes Carvalho
Publisher:
ISBN:
Category :
Languages : en
Pages : 468

Get Book Here

Book Description
A new modeling framework is introduced for the analytical study of medium access control (MAC) protocols operating in multihop wireless ad hoc networks, i.e., wireless networks characterized by the lack of any pre-existent infrastructure and where participating devices must cooperatively provide the basic functionalities that are common to any computer network. The proposed modeling framework focuses on the interactions between the physical (PHY) and MAC layers, and on the impact that each node has on the dynamics of every other node in the network. To account for the effects of both cross-layer interactions and the interference among all nodes, a novel linear model is introduced with which topology and PHY/MAC-layer aspects are naturally incorporated in what we define as interference matrices. A key feature of the model is that nodes can be modeled individually, i.e., it allows a per-node setup of many layer-specific parameters. Moreover, no spatial probability distribution or special arrangement of nodes is assumed; the model allows the computation of individual (per-node) performance metrics for any given network topology and radio channel model.