Analysis and Design Optimization of Higher Order Resonant Converters

Analysis and Design Optimization of Higher Order Resonant Converters PDF Author: Ishwar P. Bhat
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 546

Get Book Here

Book Description

Analysis and Design Optimization of Higher Order Resonant Converters

Analysis and Design Optimization of Higher Order Resonant Converters PDF Author: Ishwar P. Bhat
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 546

Get Book Here

Book Description


Analysis and Design Optimization of Resonant DC-DC Converters

Analysis and Design Optimization of Resonant DC-DC Converters PDF Author: Xiang Fang
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Get Book Here

Book Description
The development in power conversion technology is in constant demand of high power efficiency and high power density. The DC-DC power conversion is an indispensable stage for numerous power supplies and energy related applications. Particularly, in PV micro-inverters and front-end converter of power supplies, great challenges are imposed on the power performances of the DC-DC converter stage, which not only require high efficiency and density but also the capability to regulate a wide variation range of input voltage and load conditions. The resonant DC-DC converters are good candidates to meet these challenges with the advantages of achieving soft switching and low EMI. Among various resonant converter topologies, the LLC converter is very attractive for its wide gain range and providing ZVS for switches from full load to zero load condition. The operation of the LLC converter is complicated due to its multiple resonant stage mechanism. A literature review of different analysis methods are presented, and it shows that the study on the LLC is still incomplete. Therefore, an operation mode analysis method is proposed, which divides the operation into six major modes based on the occurrence of resonant stages. The resonant currents, voltages and the DC gain characteristics for each mode is investigated. To obtain a thorough view of the converter behavior, the boundaries of every mode are studied, and mode distribution regarding the gain, load and frequency is presented and discussed. As this operation mode model is a precise model, an experimental prototype is designed and built to demonstrate its accuracy in operation waveforms and gain prediction. Since most of the LLC modes have no closed-form solutions, simplification is necessary in order to utilize this mode model in practical design. Some prior approximation methods for converter's gain characteristics are discussed. Instead of getting an entire gain-vs.-frequency curve, we focus on peak gains, which is an important design parameters indicating the LLC's operating limit of input voltage and switching frequency. A numerical peak gain approximation method is developed, which provide a direct way to calculate the peak gain and its corresponding load and frequency condition. The approximated results are compared with experiments and simulations, and are proved to be accurate. In addition, as PO mode is the most favorable operation mode of the LLC, its operation region is investigated and an approximation approach is developed to determine its boundary. The design optimization of the LLC has always been a difficult problem as there are many parameters affecting the design and it lacks clear design guidance in selecting the optimal resonant tank parameters. Based on the operation mode model, three optimization methods are proposed according to the design scenarios. These methods focus on minimize the conduction loss of resonant tank while maintaining the required voltage gain level, and the approximations of peak gains and PO mode boundary can be applied here to facilitate the design. A design example is presented using one of the proposed optimization methods. As a comparison, the L-C component values are reselected and tested for the same design specifications. The experiments show that the optimal design has better efficiency performance. Finally, a generalized approach for resonant converter analysis is developed. It can be implemented by computer programs or numerical analysis tools to derive the operation waveforms and DC characteristics of resonant converters.

Analysis and Design of High Order Parallel Resonant Converters

Analysis and Design of High Order Parallel Resonant Converters PDF Author: Issa Eid Batarseh
Publisher:
ISBN:
Category :
Languages : en
Pages : 608

Get Book Here

Book Description


Analysis and Design of High Order Parallel Resonant Converters

Analysis and Design of High Order Parallel Resonant Converters PDF Author: Issa Batarseh
Publisher:
ISBN:
Category :
Languages : en
Pages : 304

Get Book Here

Book Description


Design Optimization of Off-Line Power Converters

Design Optimization of Off-Line Power Converters PDF Author: Ruiyang Yu
Publisher:
ISBN: 9781361308677
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation, "Design Optimization of Off-line Power Converters: From PWM to LLC Resonant Converteres" by Ruiyang, Yu, 余睿阳, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: High power conversion efficiency is desirable in power supplies. Design optimization of on-line power converter is presented in this thesis. High efficiencies over a wide load range, for example 20%, 50% and 100% load, are often required. It is a challenge for on-line pulse-width modulation (PWM) converters to maintain good efficiencies with light load as well as full load. A two-stage multi-objective optimization procedure is proposed to optimization power converter efficiencies at 20%, 50% and 100% load. Two-FET forward prototype converters are built to verify the optimization results. The LLC (abbreviation of two resonant inductor L and one resonant capacitor C ) series resonant converter can provide high power conversion efficiency because of the resonant nature and soft switching. The design of LLC resonant converter is more difficult than that of PWM converters since the LLC resonant converter has many resonant modes. Furthermore, the LLC resonant converter does not have analytical solution for its resonant operation. In this thesis, a systematic optimization procedure is proposed to optimize LLC series resonant converter efficiency. A mode solver technique is developed to solve LLC resonant converter operations. The proposed mode solver employs non-linear programming techniques to solve a set of LLC state equations and determine the resonant modes. Loss models are provided which serve as the objective-function to optimize converter efficiency. Optimization results show outstanding efficiency performance and experimental agreement with optimization. The optimization work extends to the LLC resonant converter with power factor correction (PFC) circuits where the effect of LLC converter input voltage variation cased by the PFC circuit is considered. Detail comparisons of PWM converter and LLC resonant converter loss profiles are also presented. The reasons that LLC resonant converter has higher efficiency are given and supported by quantitative data. Converter lifetime is highly related to component losses and temperature. The lifetime analysis is presented. The analysis reveals that the LLC resonant converter output capacitor is the weakest component concerning life. DOI: 10.5353/th_b4979964 Subjects: Electric current converters Pulse-duration modulation Electric resonators

Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences PDF Author: Wade H. Shafer
Publisher: Springer Science & Business Media
ISBN: 1461303931
Category : Science
Languages : en
Pages : 427

Get Book Here

Book Description
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 39 (thesis year 1994) a total of 13,953 thesis titles from 21 Canadian and 159 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 39 reports theses submitted in 1994, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.

Analysis, Design Optimization, and Controller Design of a DC-to-DC Parallel Resonant Converter

Analysis, Design Optimization, and Controller Design of a DC-to-DC Parallel Resonant Converter PDF Author: Vipin Madhani
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 844

Get Book Here

Book Description


Multiple Harmonic Analysis and Electromagnetoquasistatic Modeling for High Frequency Resonant Converters with Simulation-driven Design Optimization

Multiple Harmonic Analysis and Electromagnetoquasistatic Modeling for High Frequency Resonant Converters with Simulation-driven Design Optimization PDF Author: 方耀蚺
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 189

Get Book Here

Book Description


Resonant Power Converters

Resonant Power Converters PDF Author: Marian K. Kazimierczuk
Publisher: John Wiley & Sons
ISBN: 1118585860
Category : Religion
Languages : en
Pages : 632

Get Book Here

Book Description
This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them with a number of easy-to-use tools for the analysis and design of resonant power circuits. Resonant power conversion technology is now a very hot area and in the center of the renewable energy and energy harvesting technologies.

Series-parallel and Parallel-series Resonant Converters Operating on the Utility Line - Analysis, Design, Simulation and Experimental Results

Series-parallel and Parallel-series Resonant Converters Operating on the Utility Line - Analysis, Design, Simulation and Experimental Results PDF Author: Vijayakumar Belaguli
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High performance ac-to-dc converters are required to meet the regulation standards to suit wide variety of applications. This thesis presents the steady state analysis, design and operation of high frequency (HF) transformer isolated resonant converters on the single phase utility line as a low harmonic controlled rectifier. Two resonant converter configurations of third order have been studied namely the LCC-type parallel resonant converter also popularly known as series-parallel resonant converter (SPRC) and the hybrid parallel-series resonant converter bridge (HPSRCB). These converters are operated at HF using variable frequency as well as fixed frequency control and they operate in different modes depending on the choice of switching frequency and load. The variable frequency SPRC is operated in discontinuous current mode (DCM), to obtain low line current total harmonic distortion (T.H.D.) and high power factor (pf), without using active control. State space analysis has been presented for one of the predominant circuit modes encountered during its operation in DCM. The various design constraints for operating the resonant converter on the utility line for high pf operation have been stated for different control schemes. In addition, steady state analysis, design optimization carried out for dc-dc converter have been presented. The effect of resonant capacitor ratio on the converter performance characteristics have been studied. SPICE3 simulations and experimental results obtained from a 150 W converter are presented to verify the theory. Continuous current mode (CCM) operation of the SPRC, and its effect on the line current T.H.D. and pf are studied. Both fixed and variable frequency control schemes have been used to control the SPRC. Complex ac circuit analysis method has been considered as the design tool to get the design curves and design of the SPRC operating on the utility line. SPICE3 simulation results for open loop operation and experimental results for both open as well as closed loop operations (active control), for two capacitance ratio's have been presented to verify the converter performance. It is shown that nearly sinusoidal line current operation at unity pf can be obtained with closed loop operation. A HPSRCB has been proposed and operated at very high pf on the utility line as a controlled rectifier. Some of the predominant operating modes of the fixed and variable frequency HPSRCB have been identified. The steady state analysis using state space modeling presented for a dc-to-dc converter has been extended to analyze the ac-to-dc converter. Using the large signal discrete time domain model, the time variation of line current and line pf have been predicted using PROMATLAB for both fixed and variable frequency operations of HPSRCB on the utility line. SPICE3 simulation results without active control and experimental results obtained from the bread board model for both open as well as closed loop fixed and variable frequency operations have been presented to verify the theory and design performance.