An Invitation to Representation Theory

An Invitation to Representation Theory PDF Author: R. Michael Howe
Publisher: Springer Nature
ISBN: 3030980251
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
An Invitation to Representation Theory offers an introduction to groups and their representations, suitable for undergraduates. In this book, the ubiquitous symmetric group and its natural action on polynomials are used as a gateway to representation theory. The subject of representation theory is one of the most connected in mathematics, with applications to group theory, geometry, number theory and combinatorics, as well as physics and chemistry. It can however be daunting for beginners and inaccessible to undergraduates. The symmetric group and its natural action on polynomial spaces provide a rich yet accessible model to study, serving as a prototype for other groups and their representations. This book uses this key example to motivate the subject, developing the notions of groups and group representations concurrently. With prerequisites limited to a solid grounding in linear algebra, this book can serve as a first introduction to representation theory at the undergraduate level, for instance in a topics class or a reading course. A substantial amount of content is presented in over 250 exercises with complete solutions, making it well-suited for guided study.

An Invitation to Representation Theory

An Invitation to Representation Theory PDF Author: R. Michael Howe
Publisher: Springer Nature
ISBN: 3030980251
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
An Invitation to Representation Theory offers an introduction to groups and their representations, suitable for undergraduates. In this book, the ubiquitous symmetric group and its natural action on polynomials are used as a gateway to representation theory. The subject of representation theory is one of the most connected in mathematics, with applications to group theory, geometry, number theory and combinatorics, as well as physics and chemistry. It can however be daunting for beginners and inaccessible to undergraduates. The symmetric group and its natural action on polynomial spaces provide a rich yet accessible model to study, serving as a prototype for other groups and their representations. This book uses this key example to motivate the subject, developing the notions of groups and group representations concurrently. With prerequisites limited to a solid grounding in linear algebra, this book can serve as a first introduction to representation theory at the undergraduate level, for instance in a topics class or a reading course. A substantial amount of content is presented in over 250 exercises with complete solutions, making it well-suited for guided study.

An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space

An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space PDF Author: Konrad Schmüdgen
Publisher: Springer Nature
ISBN: 3030463664
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.

Invitation to Nonlinear Algebra

Invitation to Nonlinear Algebra PDF Author: Mateusz Michałek
Publisher: American Mathematical Society
ISBN: 1470453673
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
Nonlinear algebra provides modern mathematical tools to address challenges arising in the sciences and engineering. It is useful everywhere, where polynomials appear: in particular, data and computational sciences, statistics, physics, optimization. The book offers an invitation to this broad and fast-developing area. It is not an extensive encyclopedia of known results, but rather a first introduction to the subject, allowing the reader to enter into more advanced topics. It was designed as the next step after linear algebra and well before abstract algebraic geometry. The book presents both classical topics—like the Nullstellensatz and primary decomposition—and more modern ones—like tropical geometry and semidefinite programming. The focus lies on interactions and applications. Each of the thirteen chapters introduces fundamental concepts. The book may be used for a one-semester course, and the over 200 exercises will help the readers to deepen their understanding of the subject.

Classical Lie Algebras at Infinity

Classical Lie Algebras at Infinity PDF Author: Ivan Penkov
Publisher: Springer Nature
ISBN: 3030896609
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory. The exposition includes an introduction to the subject, some highlights of the theory and recent results in the field, and is therefore appropriate for advanced graduate students entering the field as well as research mathematicians wishing to expand their knowledge. The mathematical background required varies from chapter to chapter, but a standard course on Lie algebras and their representations, along with some knowledge of homological algebra, is necessary. Basic algebraic geometry and sheaf cohomology are needed for Chapter 10. Exercises of various levels of difficulty are interlaced throughout the text to add depth to topical comprehension. The unifying theme of this book is the structure and representation theory of infinite-dimensional locally reductive Lie algebras and superalgebras. Chapters 1-6 are foundational; each of the last 4 chapters presents a self-contained study of a specialized topic within the larger field. Lie superalgebras and flag supermanifolds are discussed in Chapters 3, 7, and 10, and may be skipped by the reader.

Representing Finite Groups

Representing Finite Groups PDF Author: Ambar N. Sengupta
Publisher: Springer Science & Business Media
ISBN: 1461412307
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.

An Invitation to C*-Algebras

An Invitation to C*-Algebras PDF Author: W. Arveson
Publisher: Springer Science & Business Media
ISBN: 1461263719
Category : Mathematics
Languages : en
Pages : 117

Get Book Here

Book Description
This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.

Quadratic Number Theory

Quadratic Number Theory PDF Author: J. L. Lehman
Publisher: American Mathematical Soc.
ISBN: 1470447371
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
Quadratic Number Theory is an introduction to algebraic number theory for readers with a moderate knowledge of elementary number theory and some familiarity with the terminology of abstract algebra. By restricting attention to questions about squares the author achieves the dual goals of making the presentation accessible to undergraduates and reflecting the historical roots of the subject. The representation of integers by quadratic forms is emphasized throughout the text. Lehman introduces an innovative notation for ideals of a quadratic domain that greatly facilitates computation and he uses this to particular effect. The text has an unusual focus on actual computation. This focus, and this notation, serve the author's historical purpose as well; ideals can be seen as number-like objects, as Kummer and Dedekind conceived of them. The notation can be adapted to quadratic forms and provides insight into the connection between quadratic forms and ideals. The computation of class groups and continued fraction representations are featured—the author's notation makes these computations particularly illuminating. Quadratic Number Theory, with its exceptionally clear prose, hundreds of exercises, and historical motivation, would make an excellent textbook for a second undergraduate course in number theory. The clarity of the exposition would also make it a terrific choice for independent reading. It will be exceptionally useful as a fruitful launching pad for undergraduate research projects in algebraic number theory.

Representation Theory of Finite Groups: Algebra and Arithmetic

Representation Theory of Finite Groups: Algebra and Arithmetic PDF Author: Steven H. Weintraub
Publisher: American Mathematical Soc.
ISBN: 0821832220
Category : Mathematics
Languages : en
Pages : 226

Get Book Here

Book Description
``We explore widely in the valley of ordinary representations, and we take the reader over the mountain pass leading to the valley of modular representations, to a point from which (s)he can survey this valley, but we do not attempt to widely explore it. We hope the reader will be sufficiently fascinated by the scenery to further explore both valleys on his/her own.'' --from the Preface Representation theory plays important roles in geometry, algebra, analysis, and mathematical physics. In particular, representation theory has been one of the great tools in the study and classification of finite groups. There are some beautiful results that come from representation theory: Frobenius's Theorem, Burnside's Theorem, Artin's Theorem, Brauer's Theorem--all of which are covered in this textbook. Some seem uninspiring at first, but prove to be quite useful. Others are clearly deep from the outset. And when a group (finite or otherwise) acts on something else (as a set of symmetries, for example), one ends up with a natural representation of the group. This book is an introduction to the representation theory of finite groups from an algebraic point of view, regarding representations as modules over the group algebra. The approach is to develop the requisite algebra in reasonable generality and then to specialize it to the case of group representations. Methods and results particular to group representations, such as characters and induced representations, are developed in depth. Arithmetic comes into play when considering the field of definition of a representation, especially for subfields of the complex numbers. The book has an extensive development of the semisimple case, where the characteristic of the field is zero or is prime to the order of the group, and builds the foundations of the modular case, where the characteristic of the field divides the order of the group. The book assumes only the material of a standard graduate course in algebra. It is suitable as a text for a year-long graduate course. The subject is of interest to students of algebra, number theory and algebraic geometry. The systematic treatment presented here makes the book also valuable as a reference.

Representation Theory

Representation Theory PDF Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 9780387974958
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.

An Invitation to Applied Category Theory

An Invitation to Applied Category Theory PDF Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.