Author: Dino Lorenzini
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
An Invitation to Arithmetic Geometry
Author: Dino Lorenzini
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Algebra & Geometry
Author: Mark V. Lawson
Publisher: CRC Press
ISBN: 1482246503
Category : Mathematics
Languages : en
Pages : 310
Book Description
Algebra & Geometry: An Introduction to University Mathematics provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first several chapters cover foundational topics, including the importance of proofs and properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solution of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra
Publisher: CRC Press
ISBN: 1482246503
Category : Mathematics
Languages : en
Pages : 310
Book Description
Algebra & Geometry: An Introduction to University Mathematics provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first several chapters cover foundational topics, including the importance of proofs and properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solution of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra
Invitation to the Mathematics of Fermat-Wiles
Author: Yves Hellegouarch
Publisher: Elsevier
ISBN: 0080478778
Category : Mathematics
Languages : en
Pages : 395
Book Description
Assuming only modest knowledge of undergraduate level math, Invitation to the Mathematics of Fermat-Wiles presents diverse concepts required to comprehend Wiles' extraordinary proof. Furthermore, it places these concepts in their historical context. This book can be used in introduction to mathematics theories courses and in special topics courses on Fermat's last theorem. It contains themes suitable for development by students as an introduction to personal research as well as numerous exercises and problems. However, the book will also appeal to the inquiring and mathematically informed reader intrigued by the unraveling of this fascinating puzzle. Rigorously presents the concepts required to understand Wiles' proof, assuming only modest undergraduate level math Sets the math in its historical context Contains several themes that could be further developed by student research and numerous exercises and problems Written by Yves Hellegouarch, who himself made an important contribution to the proof of Fermat's last theorem
Publisher: Elsevier
ISBN: 0080478778
Category : Mathematics
Languages : en
Pages : 395
Book Description
Assuming only modest knowledge of undergraduate level math, Invitation to the Mathematics of Fermat-Wiles presents diverse concepts required to comprehend Wiles' extraordinary proof. Furthermore, it places these concepts in their historical context. This book can be used in introduction to mathematics theories courses and in special topics courses on Fermat's last theorem. It contains themes suitable for development by students as an introduction to personal research as well as numerous exercises and problems. However, the book will also appeal to the inquiring and mathematically informed reader intrigued by the unraveling of this fascinating puzzle. Rigorously presents the concepts required to understand Wiles' proof, assuming only modest undergraduate level math Sets the math in its historical context Contains several themes that could be further developed by student research and numerous exercises and problems Written by Yves Hellegouarch, who himself made an important contribution to the proof of Fermat's last theorem
An Invitation to Modern Number Theory
Author: Steven J. Miller
Publisher: Princeton University Press
ISBN: 0691215979
Category : Mathematics
Languages : en
Pages : 526
Book Description
In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.
Publisher: Princeton University Press
ISBN: 0691215979
Category : Mathematics
Languages : en
Pages : 526
Book Description
In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.
Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
An Invitation to Abstract Mathematics
Author: Béla Bajnok
Publisher: Springer Nature
ISBN: 3030561747
Category : Mathematics
Languages : en
Pages : 443
Book Description
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Publisher: Springer Nature
ISBN: 3030561747
Category : Mathematics
Languages : en
Pages : 443
Book Description
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Arithmetics
Author: Marc Hindry
Publisher: Springer Science & Business Media
ISBN: 1447121317
Category : Mathematics
Languages : en
Pages : 334
Book Description
Number theory is a branch of mathematics which draws its vitality from a rich historical background. It is also traditionally nourished through interactions with other areas of research, such as algebra, algebraic geometry, topology, complex analysis and harmonic analysis. More recently, it has made a spectacular appearance in the field of theoretical computer science and in questions of communication, cryptography and error-correcting codes. Providing an elementary introduction to the central topics in number theory, this book spans multiple areas of research. The first part corresponds to an advanced undergraduate course. All of the statements given in this part are of course accompanied by their proofs, with perhaps the exception of some results appearing at the end of the chapters. A copious list of exercises, of varying difficulty, are also included here. The second part is of a higher level and is relevant for the first year of graduate school. It contains an introduction to elliptic curves and a chapter entitled “Developments and Open Problems”, which introduces and brings together various themes oriented toward ongoing mathematical research. Given the multifaceted nature of number theory, the primary aims of this book are to: - provide an overview of the various forms of mathematics useful for studying numbers - demonstrate the necessity of deep and classical themes such as Gauss sums - highlight the role that arithmetic plays in modern applied mathematics - include recent proofs such as the polynomial primality algorithm - approach subjects of contemporary research such as elliptic curves - illustrate the beauty of arithmetic The prerequisites for this text are undergraduate level algebra and a little topology of Rn. It will be of use to undergraduates, graduates and phd students, and may also appeal to professional mathematicians as a reference text.
Publisher: Springer Science & Business Media
ISBN: 1447121317
Category : Mathematics
Languages : en
Pages : 334
Book Description
Number theory is a branch of mathematics which draws its vitality from a rich historical background. It is also traditionally nourished through interactions with other areas of research, such as algebra, algebraic geometry, topology, complex analysis and harmonic analysis. More recently, it has made a spectacular appearance in the field of theoretical computer science and in questions of communication, cryptography and error-correcting codes. Providing an elementary introduction to the central topics in number theory, this book spans multiple areas of research. The first part corresponds to an advanced undergraduate course. All of the statements given in this part are of course accompanied by their proofs, with perhaps the exception of some results appearing at the end of the chapters. A copious list of exercises, of varying difficulty, are also included here. The second part is of a higher level and is relevant for the first year of graduate school. It contains an introduction to elliptic curves and a chapter entitled “Developments and Open Problems”, which introduces and brings together various themes oriented toward ongoing mathematical research. Given the multifaceted nature of number theory, the primary aims of this book are to: - provide an overview of the various forms of mathematics useful for studying numbers - demonstrate the necessity of deep and classical themes such as Gauss sums - highlight the role that arithmetic plays in modern applied mathematics - include recent proofs such as the polynomial primality algorithm - approach subjects of contemporary research such as elliptic curves - illustrate the beauty of arithmetic The prerequisites for this text are undergraduate level algebra and a little topology of Rn. It will be of use to undergraduates, graduates and phd students, and may also appeal to professional mathematicians as a reference text.
Algebraic Groups and Class Fields
Author: Jean-Pierre Serre
Publisher: Springer Science & Business Media
ISBN: 1461210356
Category : Mathematics
Languages : en
Pages : 220
Book Description
Translation of the French Edition
Publisher: Springer Science & Business Media
ISBN: 1461210356
Category : Mathematics
Languages : en
Pages : 220
Book Description
Translation of the French Edition
An Invitation to Quantum Cohomology
Author: Joachim Kock
Publisher: Springer Science & Business Media
ISBN: 0817644954
Category : Mathematics
Languages : en
Pages : 162
Book Description
Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory
Publisher: Springer Science & Business Media
ISBN: 0817644954
Category : Mathematics
Languages : en
Pages : 162
Book Description
Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory
Arithmetic Geometry
Author: G. Cornell
Publisher: Springer Science & Business Media
ISBN: 1461386551
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation.
Publisher: Springer Science & Business Media
ISBN: 1461386551
Category : Mathematics
Languages : en
Pages : 359
Book Description
This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation.