Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351
Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
An Invitation to Applied Category Theory
Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351
Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351
Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
An Invitation to Applied Category Theory
Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108482295
Category : Computers
Languages : en
Pages : 351
Book Description
Category theory reveals commonalities between structures of all sorts. This book shows its potential in science, engineering, and beyond.
Publisher: Cambridge University Press
ISBN: 1108482295
Category : Computers
Languages : en
Pages : 351
Book Description
Category theory reveals commonalities between structures of all sorts. This book shows its potential in science, engineering, and beyond.
Category Theory for the Sciences
Author: David I. Spivak
Publisher: MIT Press
ISBN: 0262320533
Category : Mathematics
Languages : en
Pages : 495
Book Description
An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences. Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines. Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs—categories in disguise. After explaining the “big three” concepts of category theory—categories, functors, and natural transformations—the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions. Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.
Publisher: MIT Press
ISBN: 0262320533
Category : Mathematics
Languages : en
Pages : 495
Book Description
An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences. Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines. Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs—categories in disguise. After explaining the “big three” concepts of category theory—categories, functors, and natural transformations—the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions. Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.
Conceptual Mathematics
Author: F. William Lawvere
Publisher: Cambridge University Press
ISBN: 0521894859
Category : Mathematics
Languages : en
Pages : 409
Book Description
This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.
Publisher: Cambridge University Press
ISBN: 0521894859
Category : Mathematics
Languages : en
Pages : 409
Book Description
This truly elementary book on categories introduces retracts, graphs, and adjoints to students and scientists.
Categories and Computer Science
Author: R. F. C. Walters
Publisher: Cambridge University Press
ISBN: 9780521422260
Category : Computers
Languages : en
Pages : 180
Book Description
Category theory has become increasingly important and popular in computer science, and many universities now have introductions to category theory as part of their courses for undergraduate computer scientists. The author is a respected category theorist and has based this textbook on a course given over the last few years at the University of Sydney. The theory is developed in a straightforward way, and is enriched with many examples from computer science. Thus this book meets the needs of undergradute computer scientists, and yet retains a level of mathematical correctness that will broaden its appeal to include students of mathematics new to category theory.
Publisher: Cambridge University Press
ISBN: 9780521422260
Category : Computers
Languages : en
Pages : 180
Book Description
Category theory has become increasingly important and popular in computer science, and many universities now have introductions to category theory as part of their courses for undergraduate computer scientists. The author is a respected category theorist and has based this textbook on a course given over the last few years at the University of Sydney. The theory is developed in a straightforward way, and is enriched with many examples from computer science. Thus this book meets the needs of undergradute computer scientists, and yet retains a level of mathematical correctness that will broaden its appeal to include students of mathematics new to category theory.
Theoretical Computer Science for the Working Category Theorist
Author: Noson S. Yanofsky
Publisher: Cambridge University Press
ISBN: 9781108792745
Category : Mathematics
Languages : en
Pages : 150
Book Description
Using basic category theory, this Element describes all the central concepts and proves the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. In this Element, readers will meet some of the deepest ideas and theorems of modern computers and mathematics, such as Turing machines, unsolvable problems, the P=NP question, Kurt Gödel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. The concepts come alive with many examples and exercises.
Publisher: Cambridge University Press
ISBN: 9781108792745
Category : Mathematics
Languages : en
Pages : 150
Book Description
Using basic category theory, this Element describes all the central concepts and proves the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. In this Element, readers will meet some of the deepest ideas and theorems of modern computers and mathematics, such as Turing machines, unsolvable problems, the P=NP question, Kurt Gödel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. The concepts come alive with many examples and exercises.
An Invitation to General Algebra and Universal Constructions
Author: George M. Bergman
Publisher: Springer
ISBN: 3319114786
Category : Mathematics
Languages : en
Pages : 574
Book Description
Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.
Publisher: Springer
ISBN: 3319114786
Category : Mathematics
Languages : en
Pages : 574
Book Description
Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.
An Invitation to Applied Mathematics
Author: Carmen Chicone
Publisher: Academic Press
ISBN: 0128041544
Category : Mathematics
Languages : en
Pages : 880
Book Description
An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics. - Presents an integrated wealth of modeling, analysis, and numerical methods in one volume - Provides practical and comprehensible introductions to complex subjects, for example, conservation laws, CFD, SPH, BEM, and FEM - Includes a rich set of applications, with more appealing problems and projects suggested
Publisher: Academic Press
ISBN: 0128041544
Category : Mathematics
Languages : en
Pages : 880
Book Description
An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics. - Presents an integrated wealth of modeling, analysis, and numerical methods in one volume - Provides practical and comprehensible introductions to complex subjects, for example, conservation laws, CFD, SPH, BEM, and FEM - Includes a rich set of applications, with more appealing problems and projects suggested
Category Theory in Context
Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273
Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273
Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.
Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.