Author: Stephanie Alexander
Publisher: Springer
ISBN: 3030053121
Category : Mathematics
Languages : en
Pages : 95
Book Description
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.
An Invitation to Alexandrov Geometry
Author: Stephanie Alexander
Publisher: Springer
ISBN: 3030053121
Category : Mathematics
Languages : en
Pages : 95
Book Description
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.
Publisher: Springer
ISBN: 3030053121
Category : Mathematics
Languages : en
Pages : 95
Book Description
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.
Alexandrov Geometry
Author: Stephanie Alexander
Publisher: American Mathematical Society
ISBN: 147047302X
Category : Mathematics
Languages : en
Pages : 303
Book Description
Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are similar, their properties and known applications are quite different. The goal of this book is to give a comprehensive exposition of the structure theory of Alexandrov spaces with curvature bounded above and below. It includes all the basic material as well as selected topics inspired by considering Alexandrov spaces with CBA and with CBB simultaneously. The book also includes an extensive problem list with solutions indicated for every problem.
Publisher: American Mathematical Society
ISBN: 147047302X
Category : Mathematics
Languages : en
Pages : 303
Book Description
Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are similar, their properties and known applications are quite different. The goal of this book is to give a comprehensive exposition of the structure theory of Alexandrov spaces with curvature bounded above and below. It includes all the basic material as well as selected topics inspired by considering Alexandrov spaces with CBA and with CBB simultaneously. The book also includes an extensive problem list with solutions indicated for every problem.
Recent Advances in Alexandrov Geometry
Author: Gerardo Arizmendi Echegaray
Publisher: Springer Nature
ISBN: 3030992985
Category : Mathematics
Languages : en
Pages : 119
Book Description
This volume is devoted to various aspects of Alexandrov Geometry for those wishing to get a detailed picture of the advances in the field. It contains enhanced versions of the lecture notes of the two mini-courses plus those of one research talk given at CIMAT. Peter Petersen’s part aims at presenting various rigidity results about Alexandrov spaces in a way that facilitates the understanding by a larger audience of geometers of some of the current research in the subject. They contain a brief overview of the fundamental aspects of the theory of Alexandrov spaces with lower curvature bounds, as well as the aforementioned rigidity results with complete proofs. The text from Fernando Galaz-García’s minicourse was completed in collaboration with Jesús Nuñez-Zimbrón. It presents an up-to-date and panoramic view of the topology and geometry of 3-dimensional Alexandrov spaces, including the classification of positively and non-negatively curved spaces and the geometrization theorem. They also present Lie group actions and their topological and equivariant classifications as well as a brief account of results on collapsing Alexandrov spaces. Jesús Nuñez-Zimbrón’s contribution surveys two recent developments in the understanding of the topological and geometric rigidity of singular spaces with curvature bounded below.
Publisher: Springer Nature
ISBN: 3030992985
Category : Mathematics
Languages : en
Pages : 119
Book Description
This volume is devoted to various aspects of Alexandrov Geometry for those wishing to get a detailed picture of the advances in the field. It contains enhanced versions of the lecture notes of the two mini-courses plus those of one research talk given at CIMAT. Peter Petersen’s part aims at presenting various rigidity results about Alexandrov spaces in a way that facilitates the understanding by a larger audience of geometers of some of the current research in the subject. They contain a brief overview of the fundamental aspects of the theory of Alexandrov spaces with lower curvature bounds, as well as the aforementioned rigidity results with complete proofs. The text from Fernando Galaz-García’s minicourse was completed in collaboration with Jesús Nuñez-Zimbrón. It presents an up-to-date and panoramic view of the topology and geometry of 3-dimensional Alexandrov spaces, including the classification of positively and non-negatively curved spaces and the geometrization theorem. They also present Lie group actions and their topological and equivariant classifications as well as a brief account of results on collapsing Alexandrov spaces. Jesús Nuñez-Zimbrón’s contribution surveys two recent developments in the understanding of the topological and geometric rigidity of singular spaces with curvature bounded below.
Pure Metric Geometry
Author: Anton Petrunin
Publisher: Springer Nature
ISBN: 3031391624
Category : Mathematics
Languages : en
Pages : 107
Book Description
This book serves as an introductory asset for learning metric geometry by delivering an in-depth examination of key constructions and providing an analysis of universal spaces, injective spaces, the Gromov-Hausdorff convergence, and ultralimits. This book illustrates basic examples of domestic affairs of metric spaces, this includes Alexandrov geometry, geometric group theory, metric-measure spaces and optimal transport. Researchers in metric geometry will find this book appealing and helpful, in addition to graduate students in mathematics, and advanced undergraduate students in need of an introduction to metric geometry. Any previous knowledge of classical geometry, differential geometry, topology, and real analysis will be useful in understanding the presented topics.
Publisher: Springer Nature
ISBN: 3031391624
Category : Mathematics
Languages : en
Pages : 107
Book Description
This book serves as an introductory asset for learning metric geometry by delivering an in-depth examination of key constructions and providing an analysis of universal spaces, injective spaces, the Gromov-Hausdorff convergence, and ultralimits. This book illustrates basic examples of domestic affairs of metric spaces, this includes Alexandrov geometry, geometric group theory, metric-measure spaces and optimal transport. Researchers in metric geometry will find this book appealing and helpful, in addition to graduate students in mathematics, and advanced undergraduate students in need of an introduction to metric geometry. Any previous knowledge of classical geometry, differential geometry, topology, and real analysis will be useful in understanding the presented topics.
Reshetnyak's Theory of Subharmonic Metrics
Author: François Fillastre
Publisher: Springer Nature
ISBN: 3031242556
Category : Mathematics
Languages : en
Pages : 389
Book Description
Despite the fundamental role played by Reshetnyak's work in the theory of surfaces of bounded integral curvature, the proofs of his results were only available in his original articles, written in Russian and often hard to find. This situation used to be a serious problem for experts in the field. This book provides English translations of the full set of Reshetnyak's articles on the subject. Together with the companion articles, this book provides an accessible and comprehensive reference for the subject. In turn, this book should concern any researcher (confirmed or not) interested in, or active in, the field of bounded integral curvature surfaces, or more generally interested in surface geometry and geometric analysis. Due to the analytic nature of Reshetnyak's approach, it appears that his articles are very accessible for a modern audience, comparing to the works using a more synthetic approach. These articles of Reshetnyak concern more precisely the work carried by the author following the completion of his PhD thesis, under the supervision of A.D. Alexandrov. Over the period from the 1940’s to the 1960’s, the Leningrad School of Geometry, developed a theory of the metric geometry of surfaces, similar to the classical theory of Riemannian surfaces, but with lower regularity, allowing greater flexibility. Let us mention A.D. Alexandrov, Y.D. Burago and V.A. Zalgaller. The types of surfaces studied by this school are now known as surfaces of bounded curvature. Particular cases are that of surfaces with curvature bounded from above or below, the study of which gained special attention after the works of M. Gromov and G. Perelman. Nowadays, these concepts have been generalized to higher dimensions, to graphs, and so on, and the study of metrics of weak regularity remains an active and challenging field. Reshetnyak developed an alternative and analytic approach to surfaces of bounded integral curvature. The underlying idea is based on the theorem of Gauss which states that every Riemannian surface is locally conformal to Euclidean space. Reshetnyak thus studied generalized metrics which are locally conformal to the Euclidean metric with conformal factor given by the logarithm of the difference between two subharmonic functions on the plane. Reshetnyak's condition appears to provide the correct regularity required to generalize classical concepts such as measure of curvature, integral geodesic curvature for curves, and so on, and in turn, to recover surfaces of bounded curvature. Chapter-No.7, Chapter-No.8, Chapter-No.12 and Chapter-No.13 are available open access under Creative Commons Attribution-NonCommercial 4.0 International License via link.springer.com.
Publisher: Springer Nature
ISBN: 3031242556
Category : Mathematics
Languages : en
Pages : 389
Book Description
Despite the fundamental role played by Reshetnyak's work in the theory of surfaces of bounded integral curvature, the proofs of his results were only available in his original articles, written in Russian and often hard to find. This situation used to be a serious problem for experts in the field. This book provides English translations of the full set of Reshetnyak's articles on the subject. Together with the companion articles, this book provides an accessible and comprehensive reference for the subject. In turn, this book should concern any researcher (confirmed or not) interested in, or active in, the field of bounded integral curvature surfaces, or more generally interested in surface geometry and geometric analysis. Due to the analytic nature of Reshetnyak's approach, it appears that his articles are very accessible for a modern audience, comparing to the works using a more synthetic approach. These articles of Reshetnyak concern more precisely the work carried by the author following the completion of his PhD thesis, under the supervision of A.D. Alexandrov. Over the period from the 1940’s to the 1960’s, the Leningrad School of Geometry, developed a theory of the metric geometry of surfaces, similar to the classical theory of Riemannian surfaces, but with lower regularity, allowing greater flexibility. Let us mention A.D. Alexandrov, Y.D. Burago and V.A. Zalgaller. The types of surfaces studied by this school are now known as surfaces of bounded curvature. Particular cases are that of surfaces with curvature bounded from above or below, the study of which gained special attention after the works of M. Gromov and G. Perelman. Nowadays, these concepts have been generalized to higher dimensions, to graphs, and so on, and the study of metrics of weak regularity remains an active and challenging field. Reshetnyak developed an alternative and analytic approach to surfaces of bounded integral curvature. The underlying idea is based on the theorem of Gauss which states that every Riemannian surface is locally conformal to Euclidean space. Reshetnyak thus studied generalized metrics which are locally conformal to the Euclidean metric with conformal factor given by the logarithm of the difference between two subharmonic functions on the plane. Reshetnyak's condition appears to provide the correct regularity required to generalize classical concepts such as measure of curvature, integral geodesic curvature for curves, and so on, and in turn, to recover surfaces of bounded curvature. Chapter-No.7, Chapter-No.8, Chapter-No.12 and Chapter-No.13 are available open access under Creative Commons Attribution-NonCommercial 4.0 International License via link.springer.com.
Invitations to Geometry and Topology
Author: Martin R. Bridson
Publisher:
ISBN: 9780198507727
Category : Mathematics
Languages : en
Pages : 352
Book Description
This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation.
Publisher:
ISBN: 9780198507727
Category : Mathematics
Languages : en
Pages : 352
Book Description
This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation.
An Invitation to 3-D Vision
Author: Yi Ma
Publisher: Springer Science & Business Media
ISBN: 0387217797
Category : Computers
Languages : en
Pages : 542
Book Description
This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.
Publisher: Springer Science & Business Media
ISBN: 0387217797
Category : Computers
Languages : en
Pages : 542
Book Description
This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.
Infinite Group Actions on Polyhedra
Author: MICHAEL W. DAVIS
Publisher: Springer Nature
ISBN: 3031484436
Category : Infinite groups
Languages : en
Pages : 273
Book Description
In the past fifteen years, the theory of right-angled Artin groups and special cube complexes has emerged as a central topic in geometric group theory. This monograph provides an account of this theory, along with other modern techniques in geometric group theory. Structured around the theme of group actions on contractible polyhedra, this book explores two prominent methods for constructing such actions: utilizing the group of deck transformations of the universal cover of a nonpositively curved polyhedron and leveraging the theory of simple complexes of groups. The book presents various approaches to obtaining cubical examples through CAT(0) cube complexes, including the polyhedral product construction, hyperbolization procedures, and the Sageev construction. Moreover, it offers a unified presentation of important non-cubical examples, such as Coxeter groups, Artin groups, and groups that act on buildings. Designed as a resource for graduate students and researchers specializing in geometric group theory, this book should also be of high interest to mathematicians in related areas, such as 3-manifolds.
Publisher: Springer Nature
ISBN: 3031484436
Category : Infinite groups
Languages : en
Pages : 273
Book Description
In the past fifteen years, the theory of right-angled Artin groups and special cube complexes has emerged as a central topic in geometric group theory. This monograph provides an account of this theory, along with other modern techniques in geometric group theory. Structured around the theme of group actions on contractible polyhedra, this book explores two prominent methods for constructing such actions: utilizing the group of deck transformations of the universal cover of a nonpositively curved polyhedron and leveraging the theory of simple complexes of groups. The book presents various approaches to obtaining cubical examples through CAT(0) cube complexes, including the polyhedral product construction, hyperbolization procedures, and the Sageev construction. Moreover, it offers a unified presentation of important non-cubical examples, such as Coxeter groups, Artin groups, and groups that act on buildings. Designed as a resource for graduate students and researchers specializing in geometric group theory, this book should also be of high interest to mathematicians in related areas, such as 3-manifolds.
Perspectives In Scalar Curvature (In 2 Volumes)
Author: Mikhail L Gromov
Publisher: World Scientific
ISBN: 9811249377
Category : Mathematics
Languages : en
Pages : 1635
Book Description
Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory.Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results.For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way they pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects.These two books give a rich and powerful view of one of geometry's very appealing sides.
Publisher: World Scientific
ISBN: 9811249377
Category : Mathematics
Languages : en
Pages : 1635
Book Description
Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory.Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results.For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way they pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects.These two books give a rich and powerful view of one of geometry's very appealing sides.
Differential Geometry in the Large
Author: Owen Dearricott
Publisher: Cambridge University Press
ISBN: 1108812813
Category : Mathematics
Languages : en
Pages : 401
Book Description
From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.
Publisher: Cambridge University Press
ISBN: 1108812813
Category : Mathematics
Languages : en
Pages : 401
Book Description
From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.