An Introduction to the Properties of Fluids and Solids

An Introduction to the Properties of Fluids and Solids PDF Author: Robert A. Heidemann
Publisher: Calgary : University of Calgary Press
ISBN: 9780919813069
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This book deals with some basic thermodynamic and transport properties of fluids and solids that are of interest in engineering applications. Various notions about the basic structure of matter, fundamental concepts of our physical world and the conditions of equilibrium between different phases of matter are discussed in the first part of the book. The macroscopic properties of fluids and solids are explained in the latter part. The book is written for first-year university students in engineering. Therefore, simple derivations and clear explanations have been preferred to detailed theoretical treatment. Illustrative problems, spaced throughout the text, demonstrate the application of various concepts and facilitate a better understanding of the theory. The text provides a sound first treatment of many properties of fluids and solids of interest in all the engineering disciplines.

An Introduction to the Properties of Fluids and Solids

An Introduction to the Properties of Fluids and Solids PDF Author: Robert A. Heidemann
Publisher: Calgary : University of Calgary Press
ISBN: 9780919813069
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This book deals with some basic thermodynamic and transport properties of fluids and solids that are of interest in engineering applications. Various notions about the basic structure of matter, fundamental concepts of our physical world and the conditions of equilibrium between different phases of matter are discussed in the first part of the book. The macroscopic properties of fluids and solids are explained in the latter part. The book is written for first-year university students in engineering. Therefore, simple derivations and clear explanations have been preferred to detailed theoretical treatment. Illustrative problems, spaced throughout the text, demonstrate the application of various concepts and facilitate a better understanding of the theory. The text provides a sound first treatment of many properties of fluids and solids of interest in all the engineering disciplines.

Introduction to the Physics of Fluids and Solids

Introduction to the Physics of Fluids and Solids PDF Author: J. S. Trefil
Publisher: Elsevier
ISBN: 148318739X
Category : Science
Languages : en
Pages : 319

Get Book Here

Book Description
Introduction to the Physics of Fluids and Solids presents a way to learn continuum mechanics without mastering any other systems. It discusses an introduction to the principles of fluid mechanics. Another focus of study is the fluids in astrophysics. Some of the topics covered in the book are the rotation of the galaxy, the concept of stability, the fluids in motion, and the waves in fluids, the theory of the tides, the vibrations of the earth, and nuclear fission. The viscosity in fluids is covered. The flow of viscous fluids is discussed. The text identifies the general circulation of the atmosphere. An analysis of the general properties of solids is presented. A chapter of the volume is devoted to the applications of seismology. Another section of the book focuses on the flow of the blood and the urinary drop spectrometer. The book will provide useful information to doctors, physicists, engineers, students and researchers.

Gases, Liquids and Solids

Gases, Liquids and Solids PDF Author: David Tabor
Publisher: Cambridge University Press
ISBN: 9780521406673
Category : Science
Languages : en
Pages : 448

Get Book Here

Book Description
This is now the third edition of a well established and highly successful undergraduate text. The content of the second edition has been reworked and added to where necessary, and completely new material has also been included. There are new sections on amorphous solids and liquid crystals, and completely new chapters on colloids and polymers. Using unsophisticated mathematics and simple models, Professor Tabor leads the reader skilfully and systematically from the basic physics of interatomic and intermolecular forces, temperature, heat and thermodynamics, to a coherent understanding of the bulk properties of gases, liquids and solids. The introductory material on intermolecular forces and on heat and thermodynamics is followed by several chapters dealing with the properties of ideal and real gases, both at an elementary and at a more sophisticated level. The mechanical, thermal and electrical properties of solids are considered next, before an examination of the liquid state. The author continues with chapters on colloids and polymers, and ends with a discussion of the dielectric and magnetic properties of matter in terms of simple atomic models. The abiding theme is that all these macroscopic material properties can be understood as resulting from the competition between thermal energy and intermolecular or interatomic forces. This is a lucid textbook which will continue to provide students of physics and chemistry with a comprehensive and integrated view of the properties of matter in all its many fascinating forms.

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics PDF Author: Edward J. Shaughnessy
Publisher: Oxford University Press, USA
ISBN:
Category : CD-ROMs
Languages : en
Pages : 1064

Get Book Here

Book Description
This is an introductory fluid mechanics text, intended for the first Fluid Mechanics course required of all engineers. The goal of this book is to modernise the teaching of fluid mechanics by encouraging students to visualise and simulate flow processes. The book also introduces students to the capabilities of computational fluid dynamics (CFD) techniques, the most important new approach to the study of fluids. Fluid mechanics is traditionally one of the most difficult topics in the curriculum for ME students: this text aims to overcome those learning difficulties through visualisation of the key concepts.Contents: 1. Fundamental Concepts 1.1 Introduction 1.2 Gases. Liquids and Solids 1.3 Methods of Description 1.4 Dimensions and Unit Sytems 1.5 Problem Solving 2. Fluid Properties 2.1 Introduction 2.2 Mass, Weight and Density 2.3 Pressure 2.4 Temperature and Other Thermal Properties 2.5 The Perfect Gas Law 2.6 Bulk Compressibility Modules 2.7 Viscosity 2.8 Surface Tension 2.9 Fluid Energy 3. Case Studies in Fluid Mechanics 3.1 Introduction 3.2 Common Dimensionless Groups 3.3 Case Studies 4. Fluid Forces 4.1 Introduction 4.2 Classification of Fluid Forces 4.3 The Orgins of Body and Surface Forces 4.4 Body Forces 4.5 Surface Forces 4.6 Stress in a Fluid 4.7 Forces Balance in a Fluid 5. Fluid Statics 5.1 Introduction 5.2 Hydrostatic Stress 5.3 Hydrostatic Equation 5.4 Hydrostatic Pressure Distribution 5.5 Hydrostatic Force 5.6 Hydrostatic Moment 5.7 Resultant Force and Point of Application 5.8 Buoyancy and Archimedes 5.9 Equilibrium and Stability of Immerseed Bodies 6. The Velocity Field and Fluid Transport 6.1 Introduction 6.2 The Fluid Velocity Field 6.3 Fluid Acceleration 6.4 The Substantial Derivative 6.5 Classification of Flows 6.6 No-Slip, No-Penetration Boundary Condition 6.7 Fluid Transport 6.8 Average Velocity and Flowrate 7. Control Volume Analysis 7.1 Introduction 7.2 Basic Concepts: System and Control Volume 7.3 System and Control Volume Analysis 7.4 Reynolds Transport Theorem for a System 7.5 Reynolds Transport Theorem for a Control Volume 7.6 Control Volume Analysis 8. Flow of an Invicid Fluid: The Bernoulli Equation 8.1 Introduction 8.2 Friction Flow along a Streamline 8.3 Bernoulli Equation 8.4 Static, Dynamic, Stagnation and Total Pressure 8.5 Applications of the Bernoulli Equation 8.6 Relationship to the Energy Equation 9. Dimensional Analysis and Similitude 9.1 Introduction 9.2 Buckingham PI Theorem 9.3 Repeating Variables Method 9.4 Similitude and Model Development 9.5 Correlation of Experimental Data 9.6 Application to Case Studies 10. Elements of Flow Visualisation and Flow Structure 10.1 Introduction 10.2 Lagrangian Kinematics 10.3 The Eulerian-Langrangian Connection 10.4 Material Lines, Surfaces and Volumes 10.5 Pathlines and Streaklines 10.6 Streamlines and Streamtubes 10.7 Motion and Deformation 10.8 Velocity 10.9 Rate of Rotation 10.10 Rate of Expansion 10.11 Rate of Shear Deformation 11. Governing Equations of Fluid Dynamics 11.1 Introduction 11.2 Continuity Equation 11.3 Momentum Equation 11.4 Constitutive Model for a Newtonian Fluid 11.5 Navier-Stokes Equations 11.6 Euler Equations 11.7 Energy Equation 11.8 Discussion 12. Analysis of Incompressive Flow 12.1 Introduction 12.2 Steady Viscous Flow 12.3 Unsteady Viscous Flow 12.4 Turbulent 12.5 Inviscid Irrotational Flow 13. Flow in Pipes and Ducts 13.1 Introduction 13.2 Steady Fully Developed Flow in a Pipe or Duct 13.3 Analysis of Flow in Single Path Pipe and Duct Systems 13.4 Analysis of Flow in Multiple Path Pipe and Duct Systems 13.5 Elements of Pipe and Duct Systems Design 14. External Flow 14.1 Introduction 14.2 Boundary Layers: Basic Concepts 14.3 Drag: Basic Concepts 14.4 Drag Coefficients 14.5 Life and Drag of Airfoils 15. Open Channel Flow 15.1 Introduction 15.2 Basic Concepts in Open Channel Flow 15.3 The Importance of the Froude Number 15.4 Energy Conservation in Open Channel Flow 15.5 Flow in a Channel with Uniform Depth 15.6 Flow in a Channel with Gradually-Varying Depth 15.7 Flow Under a Sluice Gate 15.8 Flow over a Weir

Composition and Properties of Drilling and Completion Fluids

Composition and Properties of Drilling and Completion Fluids PDF Author: Ryen Caenn
Publisher: Gulf Professional Publishing
ISBN: 0123838592
Category : Technology & Engineering
Languages : en
Pages : 721

Get Book Here

Book Description
The petroleum industry in general has been dominated by engineers and production specialists. The upstream segment of the industry is dominated by drilling/completion engineers. Usually, neither of those disciplines have a great deal of training in the chemistry aspects of drilling and completing a well prior to its going on production. The chemistry of drilling fluids and completion fluids have a profound effect on the success of a well. For example, historically the drilling fluid costs to drill a well have averaged around 7% of the overall cost of the well, before completion. The successful delivery of up to 100% of that wellbore, in many cases may be attributable to the fluid used. Considered the "bible" of the industry, Composition and Properties of Drilling and Completion Fluids, first written by Walter Rogers in 1948, and updated on a regular basis thereafter, is a key tool to achieving successful delivery of the wellbore. In its Sixth Edition, Composition and Properties of Drilling and Completion Fluids has been updated and revised to incorporate new information on technology, economic, and political issues that have impacted the use of fluids to drill and complete oil and gas wells. With updated content on Completion Fluids and Reservoir Drilling Fluids, Health, Safety & Environment, Drilling Fluid Systems and Products, new fluid systems and additives from both chemical and engineering perspectives, Wellbore Stability, adding the new R&D on water-based muds, and with increased content on Equipment and Procedures for Evaluating Drilling Fluid Performance in light of the advent of digital technology and better manufacturing techniques, Composition and Properties of Drilling and Completion Fluids has been thoroughly updated to meet the drilling and completion engineer's needs. Explains a myriad of new products and fluid systems Cover the newest API/SI standards New R&D on water-based muds New emphases on Health, Safety & Environment New Chapter on waste management and disposal

The Properties of Gases and Liquids 5E

The Properties of Gases and Liquids 5E PDF Author: Bruce E. Poling
Publisher: McGraw Hill Professional
ISBN: 0071499997
Category : Technology & Engineering
Languages : en
Pages : 802

Get Book Here

Book Description
Must-have reference for processes involving liquids, gases, and mixtures Reap the time-saving, mistake-avoiding benefits enjoyed by thousands of chemical and process design engineers, research scientists, and educators. Properties of Gases and Liquids, Fifth Edition, is an all-inclusive, critical survey of the most reliable estimating methods in use today --now completely rewritten and reorganized by Bruce Poling, John Prausnitz, and John O’Connell to reflect every late-breaking development. You get on-the-spot information for estimating both physical and thermodynamic properties in the absence of experimental data with this property data bank of 600+ compound constants. Bridge the gap between theory and practice with this trusted, irreplaceable, and expert-authored expert guide -- the only book that includes a critical analysis of existing methods as well as hands-on practical recommendations. Areas covered include pure component constants; thermodynamic properties of ideal gases, pure components and mixtures; pressure-volume-temperature relationships; vapor pressures and enthalpies of vaporization of pure fluids; fluid phase equilibria in multicomponent systems; viscosity; thermal conductivity;diffusion coefficients; and surface tension.

An Introduction to the Liquid State

An Introduction to the Liquid State PDF Author: P Egelstaff
Publisher: Elsevier
ISBN: 0323159036
Category : Science
Languages : en
Pages : 253

Get Book Here

Book Description
An Introduction to the Liquid State focuses on the atomic motions and positions of liquids. Particularly given importance in this book are internal motion of molecules as a whole and the motion of atoms in a monatomic liquid. Divided into 16 chapters, the book opens by outlining the general properties of liquids, including a comparison of liquid argon and liquid sodium, discussions on theories and methods of studying the liquid state, and thermodynamic relationships. The book proceeds by defining the molecular distribution functions and equation of state, the potential function for non-conducting liquids and metals, and measurement of pair distribution function. Numerical analyses and representations are provided to simplify the functions of equations. The book discusses equilibrium properties wherein calculations on the state of gases and fluids are presented. The text also underlines space and time dependent correlation functions. Given emphasis in this part are neutron scattering, electromagnetic radiation, and various radiation scattering techniques. Other concerns discussed are diffusion and single particle motion, velocity of correlation function, diffusion and viscosity coefficients, liquid-gas critical point, and a comparison of classical and quantum liquids. The selection is a valuable source of information for readers wanting to study the composition and reactions of liquids.

An Introduction to the Mechanical Properties of Solid Polymers

An Introduction to the Mechanical Properties of Solid Polymers PDF Author: I. M. Ward
Publisher: John Wiley & Sons
ISBN: 0470020377
Category : Technology & Engineering
Languages : en
Pages : 394

Get Book Here

Book Description
Provides a comprehensive introduction to the mechanical behaviour of solid polymers. Extensively revised and updated throughout, the second edition now includes new material on mechanical relaxations and anisotropy, composites modelling, non-linear viscoelasticity, yield behaviour and fracture of tough polymers. The accessible approach of the book has been retained with each chapter designed to be self contained and the theory and applications of the subject carefully introduced where appropriate. The latest developments in the field are included alongside worked examples, mathematical appendices and an extensive reference. Fully revised and updated throughout to include all the latest developments in the field Worked examples at the end of the chapter An invaluable resource for students of materials science, chemistry, physics or engineering studying polymer science

Introduction to Liquid Crystals

Introduction to Liquid Crystals PDF Author: Peter J. Collings
Publisher: CRC Press
ISBN: 1351988786
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
This text relies on only introductory level physics and chemistry as the foundation for understanding liquid crystal science. Liquid crystals combine the material properties of solids with the flow properties of fluids. As such they have provided the foundation for a revolution in low- power, flat-panel display technology LCDs. In this book, the essential elements of liquid crystal science are introduced and explained from the perspectives of both the chemist and the physicist.; The text begins with an historical account of the discovery of liquid crystals and continues with a description of how different phases are generated and how different molecular architectures affect liquid crystalline properties. The rest of the book is concerned with understanding and explaining the properties of the various types of liquid crystals, and in the final part of the book, the technology of LCDs is discussed and illustrated.

Liquids and Solids

Liquids and Solids PDF Author: Michael Sprackling
Publisher: Springer Science & Business Media
ISBN: 9401160937
Category : Science
Languages : en
Pages : 249

Get Book Here

Book Description
6. 2 Creeping viscous flow in a semi-infinite channel 140 6. 3 Poiseuille flow in tubes of circular cross-section 144 6. 4 Motion of a Newtonian liquid between two coaxial cylinders 148 151 6. 5 Bodies in liquids 6. 6 liquid flow and intermolecular forces 154 Non-Newtonian liquids 157 6. 7 6. 8 Viscometers 160 Chapter 7 Surface effects 163 7. 1 Introduction 163 7. 2 Excess surface free energy and surface tension of liquids 163 7. 3 The total surface energy of liquids 167 7. 4 Surface tension and intermolecular forces 168 7. 5 Solid surfaces 171 7. 6 Specific surface free energy and the intermolecular potential 172 7. 7 liquid surfaces and the Laplace-Young equation 174 7. 8 liquid spreading 178 7. 9 Young's relation 181 7. 10 Capillary effects 184 7. 11 The sessile drop 187 7. 12 Vapour pressure and liquid-surface curvature 189 7. 13 The measurement of surface free energies 191 Chapter 8 High polymers and liquid crystals 197 8. 1 Introduction 197 8. 2 High polymers 197 8. 3 The mechanisms of polymerisation 198 8. 4 The size and shape of polymer molecules 199 8. 5 The structure of solid polymers 201 8. 6 The glass transition temperature 203 8. 7 Young's modulus of solid polymers 205 Stress-strain curves of polymers 8. 8 206 8. 9 Viscous flow in polymers 209 liquid crystals 8.