Author: Abraham Adrian Albert
Publisher: Courier Dover Publications
ISBN: 0486814688
Category : Mathematics
Languages : en
Pages : 178
Book Description
Concise text covers basics of solid analytic geometry and provides ample material for a one-semester course. Additional chapters on spherical coordinates and projective geometry suitable for longer courses or supplementary study. 1949 edition.
Solid Analytic Geometry
Author: Abraham Adrian Albert
Publisher: Courier Dover Publications
ISBN: 0486814688
Category : Mathematics
Languages : en
Pages : 178
Book Description
Concise text covers basics of solid analytic geometry and provides ample material for a one-semester course. Additional chapters on spherical coordinates and projective geometry suitable for longer courses or supplementary study. 1949 edition.
Publisher: Courier Dover Publications
ISBN: 0486814688
Category : Mathematics
Languages : en
Pages : 178
Book Description
Concise text covers basics of solid analytic geometry and provides ample material for a one-semester course. Additional chapters on spherical coordinates and projective geometry suitable for longer courses or supplementary study. 1949 edition.
A Mathematical Space Odyssey
Author: Claudi Alsina
Publisher: American Mathematical Soc.
ISBN: 1614442169
Category : Mathematics
Languages : en
Pages : 289
Book Description
Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. This book presents techniques for proving a variety of geometric results in three dimensions. Special attention is given to prisms, pyramids, platonic solids, cones, cylinders and spheres, as well as many new and classical results. A chapter is devoted to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. The book includes a selection of Challenges for each chapter with solutions, references and a complete index. The text is aimed at secondary school and college and university teachers as an introduction to solid geometry, as a supplement in problem solving sessions, as enrichment material in a course on proofs and mathematical reasoning, or in a mathematics course for liberal arts students.--
Publisher: American Mathematical Soc.
ISBN: 1614442169
Category : Mathematics
Languages : en
Pages : 289
Book Description
Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. This book presents techniques for proving a variety of geometric results in three dimensions. Special attention is given to prisms, pyramids, platonic solids, cones, cylinders and spheres, as well as many new and classical results. A chapter is devoted to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. The book includes a selection of Challenges for each chapter with solutions, references and a complete index. The text is aimed at secondary school and college and university teachers as an introduction to solid geometry, as a supplement in problem solving sessions, as enrichment material in a course on proofs and mathematical reasoning, or in a mathematics course for liberal arts students.--
Kiselev's Geometry
Author: Andreĭ Petrovich Kiselev
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Introduction to Geometry
Author: Richard Rusczyk
Publisher: Aops Incorporated
ISBN: 9781934124086
Category : Juvenile Nonfiction
Languages : en
Pages : 557
Book Description
Publisher: Aops Incorporated
ISBN: 9781934124086
Category : Juvenile Nonfiction
Languages : en
Pages : 557
Book Description
Plane and Solid Geometry
Author: Clara Avis Hart
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 504
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 504
Book Description
Euclid's Elements
Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
An Introduction to Differential Geometry
Author: T. J. Willmore
Publisher: Courier Corporation
ISBN: 0486282104
Category : Mathematics
Languages : en
Pages : 338
Book Description
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Publisher: Courier Corporation
ISBN: 0486282104
Category : Mathematics
Languages : en
Pages : 338
Book Description
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Geometry Civilized
Author: J. L. Heilbron
Publisher: Oxford University Press
ISBN: 9780198506904
Category : History
Languages : en
Pages : 344
Book Description
This lavishly illustrated book provides an unusually accessible approach to geometry by placing it in historical context. With concise discussions and carefully chosen illustrations the author brings the material to life by showing what problems motivated early geometers throughout the world. Geometry Civilized covers classical plane geometry, emphasizing the methods of Euclid but also drawing on advances made in China and India. It includes a wide range of problems, solutions, and illustrations, as well as a chapter on trigonometry, and prepares its readers for the study of solid geometry and conic sections.
Publisher: Oxford University Press
ISBN: 9780198506904
Category : History
Languages : en
Pages : 344
Book Description
This lavishly illustrated book provides an unusually accessible approach to geometry by placing it in historical context. With concise discussions and carefully chosen illustrations the author brings the material to life by showing what problems motivated early geometers throughout the world. Geometry Civilized covers classical plane geometry, emphasizing the methods of Euclid but also drawing on advances made in China and India. It includes a wide range of problems, solutions, and illustrations, as well as a chapter on trigonometry, and prepares its readers for the study of solid geometry and conic sections.
Solid Geometry, with Problems and Applications
Author: Herbert Ellsworth Slaught
Publisher:
ISBN:
Category : Geometry, Solid
Languages : en
Pages : 240
Book Description
Publisher:
ISBN:
Category : Geometry, Solid
Languages : en
Pages : 240
Book Description
An Introduction to Tensor Analysis
Author: Bipin Singh Koranga
Publisher: CRC Press
ISBN: 1000795918
Category : Mathematics
Languages : en
Pages : 127
Book Description
The subject of Tensor Analysis deals with the problem of the formulation of the relation between various entities in forms which remain invariant when we pass from one system of coordinates to another. The invariant form of equation is necessarily related to the possible system of coordinates with reference to which the equation remains invariant. The primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. We start with the consideration of the way the sets representing various entities are transformed when we pass from one system of rectangular co-ordinates to another. A Tensor may be a physical entity that can be described as a Tensor only with respect to the manner of its representation by means of multi-sux sets associated with different system of axes such that the sets associated with different system of co-ordinate obey the transformation law for Tensor. We have employed sux notation for tensors of any order, we could also employ single letter such A,B to denote Tensors.
Publisher: CRC Press
ISBN: 1000795918
Category : Mathematics
Languages : en
Pages : 127
Book Description
The subject of Tensor Analysis deals with the problem of the formulation of the relation between various entities in forms which remain invariant when we pass from one system of coordinates to another. The invariant form of equation is necessarily related to the possible system of coordinates with reference to which the equation remains invariant. The primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. We start with the consideration of the way the sets representing various entities are transformed when we pass from one system of rectangular co-ordinates to another. A Tensor may be a physical entity that can be described as a Tensor only with respect to the manner of its representation by means of multi-sux sets associated with different system of axes such that the sets associated with different system of co-ordinate obey the transformation law for Tensor. We have employed sux notation for tensors of any order, we could also employ single letter such A,B to denote Tensors.