Author: Paolo Mancosu
Publisher: Oxford University Press
ISBN: 0192895931
Category : Mathematics
Languages : en
Pages : 431
Book Description
"Proof theory is a central area of mathematical logic of special interest to philosophy . It has its roots in the foundational debate of the 1920s, in particular, in Hilbert's program in the philosophy of mathematics, which called for a formalization of mathematics, as well as for a proof, using philosophically unproblematic, "finitary" means, that these systems are free from contradiction. Structural proof theory investigates the structure and properties of proofs in different formal deductive systems, including axiomatic derivations, natural deduction, and the sequent calculus. Central results in structural proof theory are the normalization theorem for natural deduction, proved here for both intuitionistic and classical logic, and the cut-elimination theorem for the sequent calculus. In formal systems of number theory formulated in the sequent calculus, the induction rule plays a central role. It can be eliminated from proofs of sequents of a certain elementary form: every proof of an atomic sequent can be transformed into a "simple" proof. This is Hilbert's central idea for giving finitary consistency proofs. The proof requires a measure of proof complexity called an ordinal notation. The branch of proof theory dealing with mathematical systems such as arithmetic thus has come to be called ordinal proof theory. The theory of ordinal notations is developed here in purely combinatorial terms, and the consistency proof for arithmetic presented in detail"--
An Introduction to Proof Theory
Author: Paolo Mancosu
Publisher: Oxford University Press
ISBN: 0192895931
Category : Mathematics
Languages : en
Pages : 431
Book Description
"Proof theory is a central area of mathematical logic of special interest to philosophy . It has its roots in the foundational debate of the 1920s, in particular, in Hilbert's program in the philosophy of mathematics, which called for a formalization of mathematics, as well as for a proof, using philosophically unproblematic, "finitary" means, that these systems are free from contradiction. Structural proof theory investigates the structure and properties of proofs in different formal deductive systems, including axiomatic derivations, natural deduction, and the sequent calculus. Central results in structural proof theory are the normalization theorem for natural deduction, proved here for both intuitionistic and classical logic, and the cut-elimination theorem for the sequent calculus. In formal systems of number theory formulated in the sequent calculus, the induction rule plays a central role. It can be eliminated from proofs of sequents of a certain elementary form: every proof of an atomic sequent can be transformed into a "simple" proof. This is Hilbert's central idea for giving finitary consistency proofs. The proof requires a measure of proof complexity called an ordinal notation. The branch of proof theory dealing with mathematical systems such as arithmetic thus has come to be called ordinal proof theory. The theory of ordinal notations is developed here in purely combinatorial terms, and the consistency proof for arithmetic presented in detail"--
Publisher: Oxford University Press
ISBN: 0192895931
Category : Mathematics
Languages : en
Pages : 431
Book Description
"Proof theory is a central area of mathematical logic of special interest to philosophy . It has its roots in the foundational debate of the 1920s, in particular, in Hilbert's program in the philosophy of mathematics, which called for a formalization of mathematics, as well as for a proof, using philosophically unproblematic, "finitary" means, that these systems are free from contradiction. Structural proof theory investigates the structure and properties of proofs in different formal deductive systems, including axiomatic derivations, natural deduction, and the sequent calculus. Central results in structural proof theory are the normalization theorem for natural deduction, proved here for both intuitionistic and classical logic, and the cut-elimination theorem for the sequent calculus. In formal systems of number theory formulated in the sequent calculus, the induction rule plays a central role. It can be eliminated from proofs of sequents of a certain elementary form: every proof of an atomic sequent can be transformed into a "simple" proof. This is Hilbert's central idea for giving finitary consistency proofs. The proof requires a measure of proof complexity called an ordinal notation. The branch of proof theory dealing with mathematical systems such as arithmetic thus has come to be called ordinal proof theory. The theory of ordinal notations is developed here in purely combinatorial terms, and the consistency proof for arithmetic presented in detail"--
Ordinal Analysis with an Introduction to Proof Theory
Author: Toshiyasu Arai
Publisher: Springer Nature
ISBN: 9811564590
Category : Philosophy
Languages : en
Pages : 327
Book Description
This book provides readers with a guide to both ordinal analysis, and to proof theory. It mainly focuses on ordinal analysis, a research topic in proof theory that is concerned with the ordinal theoretic content of formal theories. However, the book also addresses ordinal analysis and basic materials in proof theory of first-order or omega logic, presenting some new results and new proofs of known ones.Primarily intended for graduate students and researchers in mathematics, especially in mathematical logic, the book also includes numerous exercises and answers for selected exercises, designed to help readers grasp and apply the main results and techniques discussed.
Publisher: Springer Nature
ISBN: 9811564590
Category : Philosophy
Languages : en
Pages : 327
Book Description
This book provides readers with a guide to both ordinal analysis, and to proof theory. It mainly focuses on ordinal analysis, a research topic in proof theory that is concerned with the ordinal theoretic content of formal theories. However, the book also addresses ordinal analysis and basic materials in proof theory of first-order or omega logic, presenting some new results and new proofs of known ones.Primarily intended for graduate students and researchers in mathematics, especially in mathematical logic, the book also includes numerous exercises and answers for selected exercises, designed to help readers grasp and apply the main results and techniques discussed.
Handbook of Proof Theory
Author: S.R. Buss
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823
Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823
Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Introduction to Proof in Abstract Mathematics
Author: Andrew Wohlgemuth
Publisher: Courier Corporation
ISBN: 0486141683
Category : Mathematics
Languages : en
Pages : 385
Book Description
The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.
Publisher: Courier Corporation
ISBN: 0486141683
Category : Mathematics
Languages : en
Pages : 385
Book Description
The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.
Proof Theory
Author: Wolfram Pohlers
Publisher: Springer
ISBN: 3540468250
Category : Mathematics
Languages : en
Pages : 220
Book Description
Although this is an introductory text on proof theory, most of its contents is not found in a unified form elsewhere in the literature, except at a very advanced level. The heart of the book is the ordinal analysis of axiom systems, with particular emphasis on that of the impredicative theory of elementary inductive definitions on the natural numbers. The "constructive" consequences of ordinal analysis are sketched out in the epilogue. The book provides a self-contained treatment assuming no prior knowledge of proof theory and almost none of logic. The author has, moreover, endeavoured not to use the "cabal language" of proof theory, but only a language familiar to most readers.
Publisher: Springer
ISBN: 3540468250
Category : Mathematics
Languages : en
Pages : 220
Book Description
Although this is an introductory text on proof theory, most of its contents is not found in a unified form elsewhere in the literature, except at a very advanced level. The heart of the book is the ordinal analysis of axiom systems, with particular emphasis on that of the impredicative theory of elementary inductive definitions on the natural numbers. The "constructive" consequences of ordinal analysis are sketched out in the epilogue. The book provides a self-contained treatment assuming no prior knowledge of proof theory and almost none of logic. The author has, moreover, endeavoured not to use the "cabal language" of proof theory, but only a language familiar to most readers.
A Logical Introduction to Proof
Author: Daniel W. Cunningham
Publisher: Springer Science & Business Media
ISBN: 1461436311
Category : Mathematics
Languages : en
Pages : 365
Book Description
The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.
Publisher: Springer Science & Business Media
ISBN: 1461436311
Category : Mathematics
Languages : en
Pages : 365
Book Description
The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.
A TeXas Style Introduction to Proof
Author: Ron Taylor
Publisher: American Mathematical Soc.
ISBN: 1470450461
Category : Mathematics
Languages : en
Pages : 177
Book Description
A TeXas Style Introduction to Proof is an IBL textbook designed for a one-semester course on proofs (the “bridge course”) that also introduces TeX as a tool students can use to communicate their work. As befitting “textless” text, the book is, as one reviewer characterized it, “minimal.” Written in an easy-going style, the exposition is just enough to support the activities, and it is clear, concise, and effective. The book is well organized and contains ample carefully selected exercises that are varied, interesting, and probing, without being discouragingly difficult.
Publisher: American Mathematical Soc.
ISBN: 1470450461
Category : Mathematics
Languages : en
Pages : 177
Book Description
A TeXas Style Introduction to Proof is an IBL textbook designed for a one-semester course on proofs (the “bridge course”) that also introduces TeX as a tool students can use to communicate their work. As befitting “textless” text, the book is, as one reviewer characterized it, “minimal.” Written in an easy-going style, the exposition is just enough to support the activities, and it is clear, concise, and effective. The book is well organized and contains ample carefully selected exercises that are varied, interesting, and probing, without being discouragingly difficult.
Basic Proof Theory
Author: A. S. Troelstra
Publisher: Cambridge University Press
ISBN: 9780521779111
Category : Computers
Languages : en
Pages : 436
Book Description
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
Publisher: Cambridge University Press
ISBN: 9780521779111
Category : Computers
Languages : en
Pages : 436
Book Description
This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
Proof Theory
Author: Gaisi Takeuti
Publisher: Courier Corporation
ISBN: 0486490734
Category : Mathematics
Languages : en
Pages : 514
Book Description
Focusing on Gentzen-type proof theory, this volume presents a detailed overview of creative works by author Gaisi Takeuti and other twentieth-century logicians. The text explores applications of proof theory to logic as well as other areas of mathematics. Suitable for advanced undergraduates and graduate students of mathematics, this long-out-of-print monograph forms a cornerstone for any library in mathematical logic and related topics. The three-part treatment begins with an exploration of first order systems, including a treatment of predicate calculus involving Gentzen's cut-elimination theorem and the theory of natural numbers in terms of Gödel's incompleteness theorem and Gentzen's consistency proof. The second part, which considers second order and finite order systems, covers simple type theory and infinitary logic. The final chapters address consistency problems with an examination of consistency proofs and their applications.
Publisher: Courier Corporation
ISBN: 0486490734
Category : Mathematics
Languages : en
Pages : 514
Book Description
Focusing on Gentzen-type proof theory, this volume presents a detailed overview of creative works by author Gaisi Takeuti and other twentieth-century logicians. The text explores applications of proof theory to logic as well as other areas of mathematics. Suitable for advanced undergraduates and graduate students of mathematics, this long-out-of-print monograph forms a cornerstone for any library in mathematical logic and related topics. The three-part treatment begins with an exploration of first order systems, including a treatment of predicate calculus involving Gentzen's cut-elimination theorem and the theory of natural numbers in terms of Gödel's incompleteness theorem and Gentzen's consistency proof. The second part, which considers second order and finite order systems, covers simple type theory and infinitary logic. The final chapters address consistency problems with an examination of consistency proofs and their applications.
Book of Proof
Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314
Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314
Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.