AN INTRODUCTION TO PROBABILITY THEORY AND ITS APPLICATIONS, 2ND ED, VOL 2

AN INTRODUCTION TO PROBABILITY THEORY AND ITS APPLICATIONS, 2ND ED, VOL 2 PDF Author: Willliam Feller
Publisher: John Wiley & Sons
ISBN: 9788126518067
Category :
Languages : en
Pages : 708

Get Book Here

Book Description
· The Exponential and the Uniform Densities· Special Densities. Randomization· Densities in Higher Dimensions. Normal Densities and Processes· Probability Measures and Spaces· Probability Distributions in Rr· A Survey of Some Important Distributions and Processes· Laws of Large Numbers. Applications in Analysis· The Basic Limit Theorems· Infinitely Divisible Distributions and Semi-Groups· Markov Processes and Semi-Groups· Renewal Theory· Random Walks in R1· Laplace Transforms. Tauberian Theorems. Resolvents· Applications of Laplace Transforms· Characteristic Functions· Expansions Related to the Central Limit Theorem,· Infinitely Divisible Distributions· Applications of Fourier Methods to Random Walks· Harmonic Analysis

AN INTRODUCTION TO PROBABILITY THEORY AND ITS APPLICATIONS, 2ND ED, VOL 2

AN INTRODUCTION TO PROBABILITY THEORY AND ITS APPLICATIONS, 2ND ED, VOL 2 PDF Author: Willliam Feller
Publisher: John Wiley & Sons
ISBN: 9788126518067
Category :
Languages : en
Pages : 708

Get Book Here

Book Description
· The Exponential and the Uniform Densities· Special Densities. Randomization· Densities in Higher Dimensions. Normal Densities and Processes· Probability Measures and Spaces· Probability Distributions in Rr· A Survey of Some Important Distributions and Processes· Laws of Large Numbers. Applications in Analysis· The Basic Limit Theorems· Infinitely Divisible Distributions and Semi-Groups· Markov Processes and Semi-Groups· Renewal Theory· Random Walks in R1· Laplace Transforms. Tauberian Theorems. Resolvents· Applications of Laplace Transforms· Characteristic Functions· Expansions Related to the Central Limit Theorem,· Infinitely Divisible Distributions· Applications of Fourier Methods to Random Walks· Harmonic Analysis

An Introduction to the Theory of Point Processes

An Introduction to the Theory of Point Processes PDF Author: D.J. Daley
Publisher: Springer Science & Business Media
ISBN: 0387215646
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.

Introduction to Probability

Introduction to Probability PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 188652923X
Category : Mathematics
Languages : en
Pages : 544

Get Book Here

Book Description
An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications

Probability and Statistics with Reliability, Queuing, and Computer Science Applications PDF Author: Kishor S. Trivedi
Publisher: John Wiley & Sons
ISBN: 0471460818
Category : Computers
Languages : en
Pages : 881

Get Book Here

Book Description
An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Introduction to Probability

Introduction to Probability PDF Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

An Elementary Introduction to the Theory of Probability

An Elementary Introduction to the Theory of Probability PDF Author: Boris Vladimirovich Gnedenko
Publisher: Courier Corporation
ISBN: 0486601552
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.

Introduction to Probability

Introduction to Probability PDF Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
ISBN: 1118548558
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.

A First Look at Rigorous Probability Theory

A First Look at Rigorous Probability Theory PDF Author: Jeffrey Seth Rosenthal
Publisher: World Scientific
ISBN: 9812703705
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.

A Modern Introduction to Probability and Statistics

A Modern Introduction to Probability and Statistics PDF Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485

Get Book Here

Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

Logical Consequences

Logical Consequences PDF Author: Luis M Augusto
Publisher:
ISBN: 9781848902367
Category :
Languages : en
Pages : 228

Get Book Here

Book Description
The theory of logical consequence is central in modern logic and its applications. However, it is mostly dispersed in an abundance of often difficultly accessible papers, and rarely treated with applications in mind. This book collects the most fundamental aspects of this theory and offers the reader the basics of its applications in computer science, artificial intelligence, and cognitive science, to name but the most important fields where this notion finds its many applications. Both deductive and non-deductive consequence are discussed. The starting point is classical deductive consequence: classical logic is the reference system, and the non-classical deductive systems are seen as extensions, deviations, or variations thereof. The discussion of non-classical deductive consequence focuses on many-valued, intuitionistic, modal, paraconsistent, and substructural logical consequences. The topic of non-deductive consequence is elaborated on from the viewpoints of abductive, inductive, and probabilistic logics. All in all, the major contemporary (classes of) logical systems are here discussed. The approach is mathematical in essence, and the mathematical background, mainly founded on order relations, is treated thoroughly and in an accessible way for the non-mathematician.