Author: Nadim Maluf
Publisher: Artech House
ISBN: 9781580535915
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.
An Introduction to Microelectromechanical Systems Engineering
Author: Nadim Maluf
Publisher: Artech House
ISBN: 9781580535915
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.
Publisher: Artech House
ISBN: 9781580535915
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.
Principles of Microelectromechanical Systems
Author: Ki Bang Lee
Publisher: John Wiley & Sons
ISBN: 111810224X
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.
Publisher: John Wiley & Sons
ISBN: 111810224X
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.
Mechanics of Microelectromechanical Systems
Author: Nicolae Lobontiu
Publisher: Springer Science & Business Media
ISBN: 0387230378
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer’s viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.
Publisher: Springer Science & Business Media
ISBN: 0387230378
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer’s viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.
Introduction to Microelectromechanical Microwave Systems
Author: Héctor J. de los Santos
Publisher: Artech House
ISBN: 9781580538725
Category : Science
Languages : en
Pages : 242
Book Description
Annotation The second edition covers the latest in fabrication technologies, actuation mechanisms, packaging, switching, resonator design, and microwave and wireless applications. This practical book steers readers past the drawbacks and towards the benefits of integrating RF/microwave MEMS into communications equipment
Publisher: Artech House
ISBN: 9781580538725
Category : Science
Languages : en
Pages : 242
Book Description
Annotation The second edition covers the latest in fabrication technologies, actuation mechanisms, packaging, switching, resonator design, and microwave and wireless applications. This practical book steers readers past the drawbacks and towards the benefits of integrating RF/microwave MEMS into communications equipment
Microelectromechanical Systems
Author: Committee on Advanced Materials and Fabrication Methods for Microelectromechanical Systems
Publisher: National Academies Press
ISBN: 0309591511
Category : Technology & Engineering
Languages : en
Pages : 76
Book Description
Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rival--perhaps surpass--the societal impact of integrated circuits.
Publisher: National Academies Press
ISBN: 0309591511
Category : Technology & Engineering
Languages : en
Pages : 76
Book Description
Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rival--perhaps surpass--the societal impact of integrated circuits.
MEMS-based Integrated Navigation
Author: Priyanka Aggarwal
Publisher: Artech House
ISBN: 1608070441
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Due to their micro-scale size and low power consumption, Microelectromechanical systems (MEMS) are now being utilized in a variety of fields. This leading-edge resource focuses on the application of MEMS inertial sensors to navigation systems. The book shows you how to minimize cost by adding and removing inertial sensors. Moreover, this practical reference provides you with various integration strategies with examples from real field tests. From an introduction to MEMS navigation related applicationsOC to special topics on Alignment for MEMS-Based NavigationOC to discussions on the Extended Kalman Filter, this comprehensive book covers a wide range of critical topics in this fast-growing area."
Publisher: Artech House
ISBN: 1608070441
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Due to their micro-scale size and low power consumption, Microelectromechanical systems (MEMS) are now being utilized in a variety of fields. This leading-edge resource focuses on the application of MEMS inertial sensors to navigation systems. The book shows you how to minimize cost by adding and removing inertial sensors. Moreover, this practical reference provides you with various integration strategies with examples from real field tests. From an introduction to MEMS navigation related applicationsOC to special topics on Alignment for MEMS-Based NavigationOC to discussions on the Extended Kalman Filter, this comprehensive book covers a wide range of critical topics in this fast-growing area."
Mems for Biomedical Applications
Author: Shekhar Bhansali
Publisher: Elsevier
ISBN: 0857096273
Category : Technology & Engineering
Languages : en
Pages : 511
Book Description
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy
Publisher: Elsevier
ISBN: 0857096273
Category : Technology & Engineering
Languages : en
Pages : 511
Book Description
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy
Analysis and Design Principles of MEMS Devices
Author: Minhang Bao
Publisher: Elsevier
ISBN: 008045562X
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field.* Presents the analysis and design principles of MEMS devices more systematically than ever before.* Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures* A problem section is included at the end of each chapter with answers provided at the end of the book.
Publisher: Elsevier
ISBN: 008045562X
Category : Technology & Engineering
Languages : en
Pages : 327
Book Description
Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field.* Presents the analysis and design principles of MEMS devices more systematically than ever before.* Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures* A problem section is included at the end of each chapter with answers provided at the end of the book.
Silicon Carbide Micro Electromechanical Systems for Harsh Environments
Author: Rebecca Cheung
Publisher: Imperial College Press
ISBN: 1860949096
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."
Publisher: Imperial College Press
ISBN: 1860949096
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."
DIY MEMS
Author: Deborah Munro
Publisher: Springer Nature
ISBN: 3030330737
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book describes the future of microscopically small medical devices and how to locate a lab to start conducting your own do-it-yourself microelectromechanical systems (MEMS) research in one of the many national, international, government, and other regional open use facilities, where you can quickly begin designing and fabricating devices for your applications. You will learn specific, tangible information on what MEMS are and how a device is fabricated, including what the main types of equipment are in these facilities. The book provides advice on working in a cleanroom, soft materials, collaboration, intellectual property and privacy issues, regulatory compliance, and how to navigate other issues that may arise. This book is primarily aimed at researchers and students who work at universities without MEMS facilities, and small companies who need access to MEMS resources.
Publisher: Springer Nature
ISBN: 3030330737
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book describes the future of microscopically small medical devices and how to locate a lab to start conducting your own do-it-yourself microelectromechanical systems (MEMS) research in one of the many national, international, government, and other regional open use facilities, where you can quickly begin designing and fabricating devices for your applications. You will learn specific, tangible information on what MEMS are and how a device is fabricated, including what the main types of equipment are in these facilities. The book provides advice on working in a cleanroom, soft materials, collaboration, intellectual property and privacy issues, regulatory compliance, and how to navigate other issues that may arise. This book is primarily aimed at researchers and students who work at universities without MEMS facilities, and small companies who need access to MEMS resources.