Anintroduction to Continuous Optimization / Second Edition

Anintroduction to Continuous Optimization / Second Edition PDF Author: Niclas Andreasson
Publisher: Studentlitteratur AB
ISBN: 9789144060774
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
Optimisation, or mathematical programming, is a fundamental subject within decision science and operations research, in which mathematical decision models are constructed, analysed, and solved. The books focus lies on providing a basis for the analysis of optimisation models and of candidate optimal solutions for continuous optimisation models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimisation problems. Natural algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analysed. The book answers many more questions of the form Why? and Why not? than How?. We use only elementary mathematics in the development of the book, yet are rigorous throughout. The book provides lecture, exercise and reading material for a first course on continuous optimisation and mathematical programming, geared towards third-year students, and has already been used as such for nearly ten years. The preface to the second edition describes the main changes made since the first, 2005, edition. The book can be used in mathematical optimisation courses at any mathematics, engineering, economics, and business schools. It is a perfect starting book for anyone who wishes to develop his/her understanding of the subject of optimisation, before actually applying it.

Anintroduction to Continuous Optimization / Second Edition

Anintroduction to Continuous Optimization / Second Edition PDF Author: Niclas Andreasson
Publisher: Studentlitteratur AB
ISBN: 9789144060774
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
Optimisation, or mathematical programming, is a fundamental subject within decision science and operations research, in which mathematical decision models are constructed, analysed, and solved. The books focus lies on providing a basis for the analysis of optimisation models and of candidate optimal solutions for continuous optimisation models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimisation problems. Natural algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analysed. The book answers many more questions of the form Why? and Why not? than How?. We use only elementary mathematics in the development of the book, yet are rigorous throughout. The book provides lecture, exercise and reading material for a first course on continuous optimisation and mathematical programming, geared towards third-year students, and has already been used as such for nearly ten years. The preface to the second edition describes the main changes made since the first, 2005, edition. The book can be used in mathematical optimisation courses at any mathematics, engineering, economics, and business schools. It is a perfect starting book for anyone who wishes to develop his/her understanding of the subject of optimisation, before actually applying it.

An Introduction to Continuous Optimization

An Introduction to Continuous Optimization PDF Author: Niclas Andreasson
Publisher: Courier Dover Publications
ISBN: 0486802876
Category : Mathematics
Languages : en
Pages : 515

Get Book Here

Book Description
This treatment focuses on the analysis and algebra underlying the workings of convexity and duality and necessary/sufficient local/global optimality conditions for unconstrained and constrained optimization problems. 2015 edition.

Algorithms for Continuous Optimization

Algorithms for Continuous Optimization PDF Author: Emilio Goiuseppe Spedicato
Publisher: Springer Science & Business Media
ISBN: 9780792328599
Category : Mathematics
Languages : en
Pages : 596

Get Book Here

Book Description
The NATO Advanced Study Institute on "Algorithms for continuous optimiza tion: the state of the art" was held September 5-18, 1993, at II Ciocco, Barga, Italy. It was attended by 75 students (among them many well known specialists in optimiza tion) from the following countries: Belgium, Brasil, Canada, China, Czech Republic, France, Germany, Greece, Hungary, Italy, Poland, Portugal, Rumania, Spain, Turkey, UK, USA, Venezuela. The lectures were given by 17 well known specialists in the field, from Brasil, China, Germany, Italy, Portugal, Russia, Sweden, UK, USA. Solving continuous optimization problems is a fundamental task in computational mathematics for applications in areas of engineering, economics, chemistry, biology and so on. Most real problems are nonlinear and can be of quite large size. Devel oping efficient algorithms for continuous optimization has been an important field of research in the last 30 years, with much additional impetus provided in the last decade by the availability of very fast and parallel computers. Techniques, like the simplex method, that were already considered fully developed thirty years ago have been thoroughly revised and enormously improved. The aim of this ASI was to present the state of the art in this field. While not all important aspects could be covered in the fifty hours of lectures (for instance multiob jective optimization had to be skipped), we believe that most important topics were presented, many of them by scientists who greatly contributed to their development.

A Brief Introduction to Continuous Evolutionary Optimization

A Brief Introduction to Continuous Evolutionary Optimization PDF Author: Oliver Kramer
Publisher: Springer
ISBN: 9783319034232
Category : Computers
Languages : en
Pages : 94

Get Book Here

Book Description
Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming PDF Author: Mohit Tawarmalani
Publisher: Springer Science & Business Media
ISBN: 1475735324
Category : Mathematics
Languages : en
Pages : 492

Get Book Here

Book Description
Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.

Optimization

Optimization PDF Author: Jan Brinkhuis
Publisher: Princeton University Press
ISBN: 1400829364
Category : Mathematics
Languages : en
Pages : 683

Get Book Here

Book Description
This self-contained textbook is an informal introduction to optimization through the use of numerous illustrations and applications. The focus is on analytically solving optimization problems with a finite number of continuous variables. In addition, the authors provide introductions to classical and modern numerical methods of optimization and to dynamic optimization. The book's overarching point is that most problems may be solved by the direct application of the theorems of Fermat, Lagrange, and Weierstrass. The authors show how the intuition for each of the theoretical results can be supported by simple geometric figures. They include numerous applications through the use of varied classical and practical problems. Even experts may find some of these applications truly surprising. A basic mathematical knowledge is sufficient to understand the topics covered in this book. More advanced readers, even experts, will be surprised to see how all main results can be grounded on the Fermat-Lagrange theorem. The book can be used for courses on continuous optimization, from introductory to advanced, for any field for which optimization is relevant.

Stochastic Optimization in Continuous Time

Stochastic Optimization in Continuous Time PDF Author: Fwu-Ranq Chang
Publisher: Cambridge University Press
ISBN: 1139452223
Category : Business & Economics
Languages : en
Pages : 346

Get Book Here

Book Description
First published in 2004, this is a rigorous but user-friendly book on the application of stochastic control theory to economics. A distinctive feature of the book is that mathematical concepts are introduced in a language and terminology familiar to graduate students of economics. The standard topics of many mathematics, economics and finance books are illustrated with real examples documented in the economic literature. Moreover, the book emphasises the dos and don'ts of stochastic calculus, cautioning the reader that certain results and intuitions cherished by many economists do not extend to stochastic models. A special chapter (Chapter 5) is devoted to exploring various methods of finding a closed-form representation of the value function of a stochastic control problem, which is essential for ascertaining the optimal policy functions. The book also includes many practice exercises for the reader. Notes and suggested readings are provided at the end of each chapter for more references and possible extensions.

Linear Network Optimization

Linear Network Optimization PDF Author: Dimitri P. Bertsekas
Publisher: MIT Press
ISBN: 9780262023344
Category : Business & Economics
Languages : en
Pages : 384

Get Book Here

Book Description
Linear Network Optimization presents a thorough treatment of classical approaches to network problems such as shortest path, max-flow, assignment, transportation, and minimum cost flow problems.

Global Optimization in Action

Global Optimization in Action PDF Author: János D. Pintér
Publisher: Springer Science & Business Media
ISBN: 1475725027
Category : Mathematics
Languages : en
Pages : 481

Get Book Here

Book Description
In science, engineering and economics, decision problems are frequently modelled by optimizing the value of a (primary) objective function under stated feasibility constraints. In many cases of practical relevance, the optimization problem structure does not warrant the global optimality of local solutions; hence, it is natural to search for the globally best solution(s). Global Optimization in Action provides a comprehensive discussion of adaptive partition strategies to solve global optimization problems under very general structural requirements. A unified approach to numerous known algorithms makes possible straightforward generalizations and extensions, leading to efficient computer-based implementations. A considerable part of the book is devoted to applications, including some generic problems from numerical analysis, and several case studies in environmental systems analysis and management. The book is essentially self-contained and is based on the author's research, in cooperation (on applications) with a number of colleagues. Audience: Professors, students, researchers and other professionals in the fields of operations research, management science, industrial and applied mathematics, computer science, engineering, economics and the environmental sciences.

An Introduction to Optimization

An Introduction to Optimization PDF Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
ISBN: 1118515153
Category : Mathematics
Languages : en
Pages : 646

Get Book Here

Book Description
Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.