An Introduction to Computer Aided Electromagnetic Analysis

An Introduction to Computer Aided Electromagnetic Analysis PDF Author: Charles William Trowbridge
Publisher:
ISBN: 9780951626207
Category : Electromagnetic fields
Languages : en
Pages : 238

Get Book Here

Book Description

An Introduction to Computer Aided Electromagnetic Analysis

An Introduction to Computer Aided Electromagnetic Analysis PDF Author: Charles William Trowbridge
Publisher:
ISBN: 9780951626207
Category : Electromagnetic fields
Languages : en
Pages : 238

Get Book Here

Book Description


Computer Aided Electromagnetic Modelling and Analysis

Computer Aided Electromagnetic Modelling and Analysis PDF Author: Steven Bruce Leeb
Publisher:
ISBN:
Category :
Languages : en
Pages : 252

Get Book Here

Book Description


Computer Aided Design of Wire Structures

Computer Aided Design of Wire Structures PDF Author: Dragan Poljak
Publisher: WIT Press
ISBN: 1853128848
Category : Technology & Engineering
Languages : en
Pages : 161

Get Book Here

Book Description
As an introduction to the integral equation analysis of wire structures, this book and enclosed software packages contain the user friendly version of the boundary element software for modelling the straight thin wire arrays in both frequency and time domain.

Computer-aided Analysis and Design of Electromagnetic Devices

Computer-aided Analysis and Design of Electromagnetic Devices PDF Author: S. Ratnajeevan H. Hoole
Publisher: Elsevier Publishing Company
ISBN:
Category : Science
Languages : en
Pages : 520

Get Book Here

Book Description


Electromagnetic Simulation Techniques Based on the FDTD Method

Electromagnetic Simulation Techniques Based on the FDTD Method PDF Author: W. Yu
Publisher: John Wiley & Sons
ISBN: 0470502037
Category : Technology & Engineering
Languages : en
Pages : 221

Get Book Here

Book Description
Bridges the gap between FDTD theory and the implementation of practical simulation techniques This is the first publication that guides readers step by step through the implementation of electromagnetic simulation techniques based on FDTD methods. These simulation techniques serve as an essential bridge between FDTD methods and their applications. Moreover, the book helps readers better understand the underlying logic of FDTD methods so that they can design FDTD projects using either commercial electromagnetic software packages or their own codes in order to solve practical engineering problems. The book begins with two chapters that introduce the basic concepts of the 3-D Cartesian FDTD method, followed by discussions of advanced FDTD methods such as conformal techniques, dispersive media, circuit elements, and near-to-far field transformation. Next, the book: Presents basic concepts of parallel processing techniques and systems, including parallel FDTD techniques and systems Explores simulation techniques based on FDTD methods Illustrates practical simulation techniques using engineering applications Introduces advanced simulation techniques Each chapter concludes with references to help readers investigate particular topics in greater depth. Each chapter also includes problem sets that challenge readers to put their new FDTD and simulation skills into practice. By bridging the gap between FDTD theory and practical simulation techniques, this publication is an invaluable guide for students and engineers who need to solve a wide range of design problems in RF, antenna, and microwave engineering.

Computational Electromagnetics

Computational Electromagnetics PDF Author: Thomas Rylander
Publisher: Springer Science & Business Media
ISBN: 1461453518
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understanding of the methods so they are able to write simple programs on their own. To achieve this, the book contains several MATLAB programs and detailed description of practical issues such as assembly of finite element matrices and handling of unstructured meshes. Finally, the book aims at making the students well-aware of the strengths and weaknesses of the different methods, so they can decide which method is best for each problem. In this second edition, extensive computer projects are added as well as new material throughout. Reviews of previous edition: "The well-written monograph is devoted to students at the undergraduate level, but is also useful for practising engineers." (Zentralblatt MATH, 2007)

Computational Electromagnetism

Computational Electromagnetism PDF Author: Alain Bossavit
Publisher: Academic Press
ISBN: 0080529666
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems.BenefitsTo the EngineerA sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software.To the Specialist in Numerical ModelingThe book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity."To the TeacherAn expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities.To the StudentSolved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.

Electromagnetism and Interconnections

Electromagnetism and Interconnections PDF Author: Stephane Charruau
Publisher: John Wiley & Sons
ISBN: 1118557506
Category : Science
Languages : en
Pages : 202

Get Book Here

Book Description
This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

Electromagnetic Simulation Using the FDTD Method

Electromagnetic Simulation Using the FDTD Method PDF Author: Dennis M. Sullivan
Publisher: John Wiley & Sons
ISBN: 1118646630
Category : Science
Languages : en
Pages : 169

Get Book Here

Book Description
A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Nonlinear Electromagnetic Systems

Nonlinear Electromagnetic Systems PDF Author: A. J. Moses
Publisher: IOS Press
ISBN: 9789051992519
Category : Computers
Languages : en
Pages : 986

Get Book Here

Book Description
The book covers classical and practical approaches to electromagnetic field solutions in magnetic devices. The following topics are addressed: Advanced computional techniques; Intelligent computer aided design; Magnetic materials; Inverse problems; Magnetic sensors and transducers; Performance and optimisation of devices; Applications to electronic systems; Modelling of non-linear systems and other related topics. This volume presents 200 of the best articles presented at the International Symposium on Non-Linear Electromagnetic Systems (ISEM in Cardiff, Wales). The previous ISEM papers were published in the successful volume Advanced Computational and Design Techniques in Applied Electromagnetic Systems (by Elsevier).Main chapters in this book are: Electromagnetic Devices: Non-linearities at contacts and interfaces in semiconductor structures by R.H. Williams as key-note. Optimisation, Inverse and Biological Studies: Power loss testing; intelligent computation of optimization of metal cutting; grid methods for CFD and CEM. Magnetic Materials: Materials for circuit semilator applications; rotational magnetostriction. Computational Techniques and Modelling: Electromagnetic device design; soft magnetic materials; engineering application of artificial intelligence. Sensors and Non-destructive Testing: Eddy current nondestructive evaluation; nonlinear magnetoresistance; micro magnetic sensor. Electronic and Electrical Applications: Non-linear transistor parameters; superconducting magnets.