An Introduction to Complex Analysis and the Laplace Transform

An Introduction to Complex Analysis and the Laplace Transform PDF Author: Vladimir Eiderman
Publisher: CRC Press
ISBN: 100051112X
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.

An Introduction to Complex Analysis and the Laplace Transform

An Introduction to Complex Analysis and the Laplace Transform PDF Author: Vladimir Eiderman
Publisher: CRC Press
ISBN: 100051112X
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.

Complex Variables and the Laplace Transform for Engineers

Complex Variables and the Laplace Transform for Engineers PDF Author: Wilbur R. LePage
Publisher: Courier Corporation
ISBN: 0486136442
Category : Technology & Engineering
Languages : en
Pages : 516

Get Book Here

Book Description
Acclaimed text on engineering math for graduate students covers theory of complex variables, Cauchy-Riemann equations, Fourier and Laplace transform theory, Z-transform, and much more. Many excellent problems.

An Introduction to Laplace Transforms and Fourier Series

An Introduction to Laplace Transforms and Fourier Series PDF Author: P.P.G. Dyke
Publisher: Springer Science & Business Media
ISBN: 1447105052
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.

Introduction to the Laplace Transform

Introduction to the Laplace Transform PDF Author: Peter K.F. Kuhfittig
Publisher: Springer Science & Business Media
ISBN: 1489922016
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
The purpose of this book is to give an introduction to the Laplace transform on the undergraduate level. The material is drawn from notes for a course taught by the author at the Milwaukee School of Engineering. Based on classroom experience, an attempt has been made to (1) keep the proofs short, (2) introduce applications as soon as possible, (3) concentrate on problems that are difficult to handle by the older classical methods, and (4) emphasize periodic phenomena. To make it possible to offer the course early in the curriculum (after differential equations), no knowledge of complex variable theory is assumed. However, since a thorough study of Laplace. transforms requires at least the rudiments of this theory, Chapter 3 includes a brief sketch of complex variables, with many of the details presented in Appendix A. This plan permits an introduction of the complex inversion formula, followed by additional applications. The author has found that a course taught three hours a week for a quarter can be based on the material in Chapters 1, 2, and 5 and the first three sections of Chapter 7. If additional time is available (e.g., four quarter-hours or three semester-hours), the whole book can be covered easily. The author is indebted to the students at the Milwaukee School of Engineering for their many helpful comments and criticisms.

Introduction to Complex Variables and Applications

Introduction to Complex Variables and Applications PDF Author: Mark J. Ablowitz
Publisher: Cambridge University Press
ISBN: 110896334X
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painlevé equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.

An Introduction to Complex Analysis

An Introduction to Complex Analysis PDF Author: O. Carruth McGehee
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
Recent decades have seen profound changes in the way we understand complex analysis. This new work presents a much-needed modern treatment of the subject, incorporating the latest developments and providing a rigorous yet accessible introduction to the concepts and proofs of this fundamental branch of mathematics. With its thorough review of the prerequisites and well-balanced mix of theory and practice, this book will appeal both to readers interested in pursuing advanced topics as well as those wishing to explore the many applications of complex analysis to engineering and the physical sciences. * Reviews the necessary calculus, bringing readers quickly up to speed on the material * Illustrates the theory, techniques, and reasoning through the use of short proofs and many examples * Demystifies complex versus real differentiability for functions from the plane to the plane * Develops Cauchy's Theorem, presenting the powerful and easy-to-use winding-number version * Contains over 100 sophisticated graphics to provide helpful examples and reinforce important concepts

Laplace Transforms, Numerical Methods & Complex Variables

Laplace Transforms, Numerical Methods & Complex Variables PDF Author: T. K. V. Iyengar, B. Krishna Gandhi, S. Ranganatham & M.V.S.S.N. Prasad
Publisher: S. Chand Publishing
ISBN: 9352838211
Category : Science
Languages : en
Pages : 904

Get Book Here

Book Description
Laplace Transforms, Numerical Methods & Complex Variables

Laplace Transform (PMS-6)

Laplace Transform (PMS-6) PDF Author: David Vernon Widder
Publisher: Princeton University Press
ISBN: 1400876451
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Book 6 in the Princeton Mathematical Series. Originally published in 1941. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Introduction to Complex Analysis

Introduction to Complex Analysis PDF Author: H. A. Priestley
Publisher: OUP Oxford
ISBN: 0191037206
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter. This is the latest addition to the growing list of Oxford undergraduate textbooks in mathematics, which includes: Biggs: Discrete Mathematics 2nd Edition, Cameron: Introduction to Algebra, Needham: Visual Complex Analysis, Kaye and Wilson: Linear Algebra, Acheson: Elementary Fluid Dynamics, Jordan and Smith: Nonlinear Ordinary Differential Equations, Smith: Numerical Solution of Partial Differential Equations, Wilson: Graphs, Colourings and the Four-Colour Theorem, Bishop: Neural Networks for Pattern Recognition, Gelman and Nolan: Teaching Statistics.

An Introduction to Fourier Analysis

An Introduction to Fourier Analysis PDF Author: Russell L. Herman
Publisher: CRC Press
ISBN: 1498773710
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: • Convergence and summation of infinite series • Representation of functions by infinite series • Trigonometric and Generalized Fourier series • Legendre, Bessel, gamma, and delta functions • Complex numbers and functions • Analytic functions and integration in the complex plane • Fourier and Laplace transforms. • The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.