Author: Casim Abbas
Publisher: Springer Science & Business Media
ISBN: 3642315437
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book provides an introduction to symplectic field theory, a new and important subject which is currently being developed. The starting point of this theory are compactness results for holomorphic curves established in the last decade. The author presents a systematic introduction providing a lot of background material, much of which is scattered throughout the literature. Since the content grew out of lectures given by the author, the main aim is to provide an entry point into symplectic field theory for non-specialists and for graduate students. Extensions of certain compactness results, which are believed to be true by the specialists but have not yet been published in the literature in detail, top off the scope of this monograph.
An Introduction to Compactness Results in Symplectic Field Theory
Author: Casim Abbas
Publisher: Springer Science & Business Media
ISBN: 3642315437
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book provides an introduction to symplectic field theory, a new and important subject which is currently being developed. The starting point of this theory are compactness results for holomorphic curves established in the last decade. The author presents a systematic introduction providing a lot of background material, much of which is scattered throughout the literature. Since the content grew out of lectures given by the author, the main aim is to provide an entry point into symplectic field theory for non-specialists and for graduate students. Extensions of certain compactness results, which are believed to be true by the specialists but have not yet been published in the literature in detail, top off the scope of this monograph.
Publisher: Springer Science & Business Media
ISBN: 3642315437
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book provides an introduction to symplectic field theory, a new and important subject which is currently being developed. The starting point of this theory are compactness results for holomorphic curves established in the last decade. The author presents a systematic introduction providing a lot of background material, much of which is scattered throughout the literature. Since the content grew out of lectures given by the author, the main aim is to provide an entry point into symplectic field theory for non-specialists and for graduate students. Extensions of certain compactness results, which are believed to be true by the specialists but have not yet been published in the literature in detail, top off the scope of this monograph.
New Perspectives and Challenges in Symplectic Field Theory
Author: Miguel Abreu
Publisher: American Mathematical Soc.
ISBN: 0821870432
Category : Mathematics
Languages : en
Pages : 355
Book Description
This volume, in honor of Yakov Eliashberg, gives a panorama of some of the most fascinating recent developments in symplectic, contact and gauge theories. It contains research papers aimed at experts, as well as a series of skillfully written surveys accessible for a broad geometrically oriented readership from the graduate level onwards. This collection will serve as an enduring source of information and ideas for those who want to enter this exciting area as well as for experts.
Publisher: American Mathematical Soc.
ISBN: 0821870432
Category : Mathematics
Languages : en
Pages : 355
Book Description
This volume, in honor of Yakov Eliashberg, gives a panorama of some of the most fascinating recent developments in symplectic, contact and gauge theories. It contains research papers aimed at experts, as well as a series of skillfully written surveys accessible for a broad geometrically oriented readership from the graduate level onwards. This collection will serve as an enduring source of information and ideas for those who want to enter this exciting area as well as for experts.
Bordered Heegaard Floer Homology
Author: Robert Lipshitz
Publisher: American Mathematical Soc.
ISBN: 1470428881
Category : Mathematics
Languages : en
Pages : 294
Book Description
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.
Publisher: American Mathematical Soc.
ISBN: 1470428881
Category : Mathematics
Languages : en
Pages : 294
Book Description
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.
Holomorphic Curves and Global Questions in Contact Geometry
Author: Casim Abbas
Publisher: Springer
ISBN: 3030118037
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9). The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.
Publisher: Springer
ISBN: 3030118037
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book explains the foundations of holomorphic curve theory in contact geometry. By using a particular geometric problem as a starting point the authors guide the reader into the subject. As such it ideally serves as preparation and as entry point for a deeper study of the analysis underlying symplectic field theory. An introductory chapter sets the stage explaining some of the basic notions of contact geometry and the role of holomorphic curves in the field. The authors proceed to the heart of the material providing a detailed exposition about finite energy planes and periodic orbits (chapter 4) to disk filling methods and applications (chapter 9). The material is self-contained. It includes a number of technical appendices giving the geometric analysis foundations for the main results, so that one may easily follow the discussion. Graduate students as well as researchers who want to learn the basics of this fast developing theory will highly appreciate this accessible approach taken by the authors.
Naturality and Mapping Class Groups in Heegard Floer Homology
Author: András Juhász
Publisher: American Mathematical Society
ISBN: 1470449722
Category : Mathematics
Languages : en
Pages : 174
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470449722
Category : Mathematics
Languages : en
Pages : 174
Book Description
View the abstract.
Floer Cohomology and Flips
Author: François Charest
Publisher: American Mathematical Society
ISBN: 147045310X
Category : Mathematics
Languages : en
Pages : 178
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 147045310X
Category : Mathematics
Languages : en
Pages : 178
Book Description
View the abstract.
J-holomorphic Curves and Symplectic Topology
Author: Dusa McDuff
Publisher: American Mathematical Soc.
ISBN: 0821887467
Category : Mathematics
Languages : en
Pages : 744
Book Description
The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.
Publisher: American Mathematical Soc.
ISBN: 0821887467
Category : Mathematics
Languages : en
Pages : 744
Book Description
The main goal of this book is to establish the fundamental theorems of the subject in full and rigourous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associatively of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology.
The Restricted Three-Body Problem and Holomorphic Curves
Author: Urs Frauenfelder
Publisher: Springer
ISBN: 3319722786
Category : Mathematics
Languages : en
Pages : 381
Book Description
The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Publisher: Springer
ISBN: 3319722786
Category : Mathematics
Languages : en
Pages : 381
Book Description
The book serves as an introduction to holomorphic curves in symplectic manifolds, focusing on the case of four-dimensional symplectizations and symplectic cobordisms, and their applications to celestial mechanics. The authors study the restricted three-body problem using recent techniques coming from the theory of pseudo-holomorphic curves. The book starts with an introduction to relevant topics in symplectic topology and Hamiltonian dynamics before introducing some well-known systems from celestial mechanics, such as the Kepler problem and the restricted three-body problem. After an overview of different regularizations of these systems, the book continues with a discussion of periodic orbits and global surfaces of section for these and more general systems. The second half of the book is primarily dedicated to developing the theory of holomorphic curves - specifically the theory of fast finite energy planes - to elucidate the proofs of the existence results for global surfaces of section stated earlier. The book closes with a chapter summarizing the results of some numerical experiments related to finding periodic orbits and global surfaces of sections in the restricted three-body problem. This book is also part of the Virtual Series on Symplectic Geometry http://www.springer.com/series/16019
Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory
Author: H. Hofer
Publisher: American Mathematical Soc.
ISBN: 1470422034
Category : Mathematics
Languages : en
Pages : 230
Book Description
In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.
Publisher: American Mathematical Soc.
ISBN: 1470422034
Category : Mathematics
Languages : en
Pages : 230
Book Description
In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.
The Breadth of Symplectic and Poisson Geometry
Author: Jerrold E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666
Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics
Publisher: Springer Science & Business Media
ISBN: 0817644199
Category : Mathematics
Languages : en
Pages : 666
Book Description
* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics