Introduction to Artificial Intelligence

Introduction to Artificial Intelligence PDF Author: Wolfgang Ertel
Publisher: Springer
ISBN: 3319584871
Category : Computers
Languages : en
Pages : 365

Get Book Here

Book Description
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence PDF Author: Wolfgang Ertel
Publisher: Springer
ISBN: 3319584871
Category : Computers
Languages : en
Pages : 365

Get Book Here

Book Description
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.

The Essence of Artificial Intelligence

The Essence of Artificial Intelligence PDF Author: Alison Cawsey
Publisher: Pearson
ISBN: 9780135717790
Category : Computers
Languages : en
Pages : 204

Get Book Here

Book Description
A concise, practical introduction to artificial intelligence, this title starts with the fundamentals of knowledge representation, inference, expert systems, natural language processing, machine learning, neural networks, agents, robots, and much more. Examples and algorithms are presented throughout, and the book includes a complete glossary.

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence PDF Author: Mariusz Flasiński
Publisher: Springer
ISBN: 3319400223
Category : Computers
Languages : en
Pages : 316

Get Book Here

Book Description
In the chapters in Part I of this textbook the author introduces the fundamental ideas of artificial intelligence and computational intelligence. In Part II he explains key AI methods such as search, evolutionary computing, logic-based reasoning, knowledge representation, rule-based systems, pattern recognition, neural networks, and cognitive architectures. Finally, in Part III, he expands the context to discuss theories of intelligence in philosophy and psychology, key applications of AI systems, and the likely future of artificial intelligence. A key feature of the author's approach is historical and biographical footnotes, stressing the multidisciplinary character of the field and its pioneers. The book is appropriate for advanced undergraduate and graduate courses in computer science, engineering, and other applied sciences, and the appendices offer short formal, mathematical models and notes to support the reader.

An Introduction To Artificial Intelligence

An Introduction To Artificial Intelligence PDF Author: Janet Finlay
Publisher: CRC Press
ISBN: 9781857283990
Category : Computers
Languages : en
Pages : 290

Get Book Here

Book Description
An authoritative and accessible one-stop resource, An Introduction to Artificial Intelligence presents the first full examination of AI. Designed to provide an understanding of the foundations of artificial intelligence, it examines the central computational techniques employed by AI, including knowledge representation, search, reasoning, and learning, as well as the principal application domains of expert systems, natural language, vision, robotics, software agents and cognitive modeling. Many of the major philosophical and ethical issues of AI are also introduced. Throughout the volume, the authors provide detailed, well-illustrated treatments of each topic with abundant examples and exercises. The authors bring this exciting field to life by presenting a substantial and robust introduction to artificial intelligence in a clear and concise coursebook form. This book stands as a core text for all computer scientists approaching AI for the first time.

An Introduction to Communication and Artificial Intelligence

An Introduction to Communication and Artificial Intelligence PDF Author: David J. Gunkel
Publisher: Polity
ISBN: 9781509533169
Category : Social Science
Languages : en
Pages : 320

Get Book Here

Book Description
Communication and artificial intelligence (AI) are closely related. It is communication – particularly interpersonal conversational interaction – that provides AI with its defining test case and experimental evidence. Likewise, recent developments in AI introduce new challenges and opportunities for communication studies. Technologies such as machine translation of human languages, spoken dialogue systems like Siri, algorithms capable of producing publishable journalistic content, and social robots are all designed to communicate with users in a human-like way. This timely and original textbook provides educators and students with a much-needed resource, connecting the dots between the science of AI and the discipline of communication studies. Clearly outlining the topic's scope, content and future, the text introduces key issues and debates, highlighting the importance and relevance of AI to communication studies. In lively and accessible prose, David Gunkel provides a new generation with the information, knowledge, and skills necessary to working and living in a world where social interaction is no longer restricted to humans. The first work of its kind, An Introduction to Communication and Artificial Intelligence is the go-to textbook for students and scholars getting to grips with this crucial interdisciplinary topic.

Artificial Intelligence

Artificial Intelligence PDF Author: Margaret A. Boden
Publisher: Oxford University Press
ISBN: 0191080071
Category : Computers
Languages : en
Pages : 191

Get Book Here

Book Description
The applications of Artificial Intelligence lie all around us; in our homes, schools and offices, in our cinemas, in art galleries and - not least - on the Internet. The results of Artificial Intelligence have been invaluable to biologists, psychologists, and linguists in helping to understand the processes of memory, learning, and language from a fresh angle. As a concept, Artificial Intelligence has fuelled and sharpened the philosophical debates concerning the nature of the mind, intelligence, and the uniqueness of human beings. In this Very Short Introduction , Margaret A. Boden reviews the philosophical and technological challenges raised by Artificial Intelligence, considering whether programs could ever be really intelligent, creative or even conscious, and shows how the pursuit of Artificial Intelligence has helped us to appreciate how human and animal minds are possible. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

An Introductory Guide to Artificial Intelligence for Legal Professionals

An Introductory Guide to Artificial Intelligence for Legal Professionals PDF Author: Juan Pavón
Publisher: Kluwer Law International B.V.
ISBN: 9403509821
Category : Law
Languages : en
Pages : 313

Get Book Here

Book Description
The availability of very large data sets and the increase in computing power to process them has led to a renewed intensity in corporate and governmental use of Artificial Intelligence (AI) technologies. This groundbreaking book, the first devoted entirely to the growing presence of AI in the legal profession, responds to the necessity of building up a discipline that due to its novelty requires the pooling of knowledge and experiences of well-respected experts in the AI field, taking into account the impact of AI on the law and legal practice. Essays by internationally known expert authors introduce the essentials of AI in a straightforward and intelligible style, offering jurists as many practical examples and business cases as possible so that they are able to understand the real application of this technology and its impact on their jobs and lives. Elements of the analysis include the following: crucial terms: natural language processing, machine learning and deep learning; regulations in force in major jurisdictions; ethical and social issues; labour and employment issues, including the impact that robots have on employment; prediction of outcome in the legal field (judicial proceedings, patent granting, etc.); massive analysis of documents and identification of patterns from which to derive conclusions; AI and taxation; issues of competition and intellectual property; liability and responsibility of intelligent systems; AI and cybersecurity; AI and data protection; impact on state tax revenues; use of autonomous killer robots in the military; challenges related to privacy; the need to embrace transparency and sustainability; pressure brought by clients on prices; minority languages and AI; danger that the existing gap between large and small businesses will further increase; how to avoid algorithmic biases when AI decides; AI application to due diligence; AI and non-disclosure agreements; and the role of chatbots. Interviews with pioneers in the field are included, so readers get insights into the issues that people are dealing with in day-to-day actualities. Whether conceiving AI as a transformative technology of the labour market and training or an economic and business sector in need of legal advice, this introduction to AI will help practitioners in tax law, labour law, competition law and intellectual property law understand what AI is, what it serves, what is the state of the art and the potential of this technology, how they can benefit from its advantages and what are the risks it presents. As the global economy continues to suffer the repercussions of a framework that was previously fundamentally self-regulatory, policymakers will recognize the urgent need to formulate rules to properly manage the future of AI.

An Introduction to Machine Learning

An Introduction to Machine Learning PDF Author: Miroslav Kubat
Publisher: Springer
ISBN: 3319639137
Category : Computers
Languages : en
Pages : 348

Get Book Here

Book Description
This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.

Artificial Intelligence

Artificial Intelligence PDF Author: Richard E. Neapolitan
Publisher: CRC Press
ISBN: 1351384392
Category : Computers
Languages : en
Pages : 481

Get Book Here

Book Description
The first edition of this popular textbook, Contemporary Artificial Intelligence, provided an accessible and student friendly introduction to AI. This fully revised and expanded update, Artificial Intelligence: With an Introduction to Machine Learning, Second Edition, retains the same accessibility and problem-solving approach, while providing new material and methods. The book is divided into five sections that focus on the most useful techniques that have emerged from AI. The first section of the book covers logic-based methods, while the second section focuses on probability-based methods. Emergent intelligence is featured in the third section and explores evolutionary computation and methods based on swarm intelligence. The newest section comes next and provides a detailed overview of neural networks and deep learning. The final section of the book focuses on natural language understanding. Suitable for undergraduate and beginning graduate students, this class-tested textbook provides students and other readers with key AI methods and algorithms for solving challenging problems involving systems that behave intelligently in specialized domains such as medical and software diagnostics, financial decision making, speech and text recognition, genetic analysis, and more.

Introduction to Machine Learning

Introduction to Machine Learning PDF Author: Ethem Alpaydin
Publisher: MIT Press
ISBN: 0262028182
Category : Computers
Languages : en
Pages : 639

Get Book Here

Book Description
Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.