An Information-Theoretic Approach to Neural Computing

An Information-Theoretic Approach to Neural Computing PDF Author: Gustavo Deco
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265

Get Book Here

Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.

An Information-Theoretic Approach to Neural Computing

An Information-Theoretic Approach to Neural Computing PDF Author: Gustavo Deco
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265

Get Book Here

Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.

Introduction To The Theory Of Neural Computation

Introduction To The Theory Of Neural Computation PDF Author: John A. Hertz
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 350

Get Book Here

Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Information-Theoretic Aspects of Neural Networks

Information-Theoretic Aspects of Neural Networks PDF Author: P. S. Neelakanta
Publisher: CRC Press
ISBN: 1000102750
Category : History
Languages : en
Pages : 417

Get Book Here

Book Description
Information theoretics vis-a-vis neural networks generally embodies parametric entities and conceptual bases pertinent to memory considerations and information storage, information-theoretic based cost-functions, and neurocybernetics and self-organization. Existing studies only sparsely cover the entropy and/or cybernetic aspects of neural information. Information-Theoretic Aspects of Neural Networks cohesively explores this burgeoning discipline, covering topics such as: Shannon information and information dynamics neural complexity as an information processing system memory and information storage in the interconnected neural web extremum (maximum and minimum) information entropy neural network training non-conventional, statistical distance-measures for neural network optimizations symmetric and asymmetric characteristics of information-theoretic error-metrics algorithmic complexity based representation of neural information-theoretic parameters genetic algorithms versus neural information dynamics of neurocybernetics viewed in the information-theoretic plane nonlinear, information-theoretic transfer function of the neural cellular units statistical mechanics, neural networks, and information theory semiotic framework of neural information processing and neural information flow fuzzy information and neural networks neural dynamics conceived through fuzzy information parameters neural information flow dynamics informatics of neural stochastic resonance Information-Theoretic Aspects of Neural Networks acts as an exceptional resource for engineers, scientists, and computer scientists working in the field of artificial neural networks as well as biologists applying the concepts of communication theory and protocols to the functioning of the brain. The information in this book explores new avenues in the field and creates a common platform for analyzing the neural complex as well as artificial neural networks.

System Parameter Identification

System Parameter Identification PDF Author: Badong Chen
Publisher: Newnes
ISBN: 0124045952
Category : Computers
Languages : en
Pages : 266

Get Book Here

Book Description
Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors' research provides a base for the book, but it incorporates the results from the latest international research publications. - Named a 2013 Notable Computer Book for Information Systems by Computing Reviews - One of the first books to present system parameter identification with information theoretic criteria so readers can track the latest developments - Contains numerous illustrative examples to help the reader grasp basic methods

Novelty, Information and Surprise

Novelty, Information and Surprise PDF Author: Günther Palm
Publisher: Springer Science & Business Media
ISBN: 3642290752
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
The book offers a new approach to information theory that is more general then the classical approach by Shannon. The classical definition of information is given for an alphabet of symbols or for a set of mutually exclusive propositions (a partition of the probability space Ω) with corresponding probabilities adding up to 1. The new definition is given for an arbitrary cover of Ω, i.e. for a set of possibly overlapping propositions. The generalized information concept is called novelty and it is accompanied by two new concepts derived from it, designated as information and surprise, which describe "opposite" versions of novelty, information being related more to classical information theory and surprise being related more to the classical concept of statistical significance. In the discussion of these three concepts and their interrelations several properties or classes of covers are defined, which turn out to be lattices. The book also presents applications of these new concepts, mostly in statistics and in neuroscience.

Engineering Applications of Bio-Inspired Artificial Neural Networks

Engineering Applications of Bio-Inspired Artificial Neural Networks PDF Author: Jose Mira
Publisher: Springer Science & Business Media
ISBN: 9783540660682
Category : Computers
Languages : en
Pages : 942

Get Book Here

Book Description
This book constitutes, together with its compagnion LNCS 1606, the refereed proceedings of the International Work-Conference on Artificial and Neural Networks, IWANN'99, held in Alicante, Spain in June 1999. The 91 revised papers presented were carefully reviewed and selected for inclusion in the book. This volume is devoted to applications of biologically inspired artificial neural networks in various engineering disciplines. The papers are organized in parts on artificial neural nets simulation and implementation, image processing, and engineering applications.

A Field Guide to Dynamical Recurrent Networks

A Field Guide to Dynamical Recurrent Networks PDF Author: John F. Kolen
Publisher: John Wiley & Sons
ISBN: 9780780353695
Category : Technology & Engineering
Languages : en
Pages : 458

Get Book Here

Book Description
Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.

Mathematical Approaches to Neural Networks

Mathematical Approaches to Neural Networks PDF Author: J.G. Taylor
Publisher: Elsevier
ISBN: 0080887392
Category : Computers
Languages : en
Pages : 391

Get Book Here

Book Description
The subject of Neural Networks is being seen to be coming of age, after its initial inception 50 years ago in the seminal work of McCulloch and Pitts. It is proving to be valuable in a wide range of academic disciplines and in important applications in industrial and business tasks. The progress being made in each approach is considerable. Nevertheless, both stand in need of a theoretical framework of explanation to underpin their usage and to allow the progress being made to be put on a firmer footing.This book aims to strengthen the foundations in its presentation of mathematical approaches to neural networks. It is through these that a suitable explanatory framework is expected to be found. The approaches span a broad range, from single neuron details to numerical analysis, functional analysis and dynamical systems theory. Each of these avenues provides its own insights into the way neural networks can be understood, both for artificial ones and simplified simulations. As a whole, the publication underlines the importance of the ever-deepening mathematical understanding of neural networks.

Advanced Methods in Neural Computing

Advanced Methods in Neural Computing PDF Author: Philip D. Wasserman
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description
This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.