Author: Russell Marcus
Publisher: Bloomsbury Publishing
ISBN: 1472529480
Category : Philosophy
Languages : en
Pages : 849
Book Description
A comprehensive collection of historical readings in the philosophy of mathematics and a selection of influential contemporary work, this much-needed introduction reveals the rich history of the subject. An Historical Introduction to the Philosophy of Mathematics: A Reader brings together an impressive collection of primary sources from ancient and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from key thinkers such as Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with contemporary thinkers. A selection of recent texts from philosophers including Quine, Putnam, Field and Maddy offering insights into the current state of the discipline clearly illustrates the development of the subject. Presenting historical background essential to understanding contemporary trends and a survey of recent work, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates and graduate students studying the philosophy of mathematics and an invaluable source book for working researchers.
An Historical Introduction to the Philosophy of Mathematics: A Reader
Author: Russell Marcus
Publisher: Bloomsbury Publishing
ISBN: 1472529480
Category : Philosophy
Languages : en
Pages : 849
Book Description
A comprehensive collection of historical readings in the philosophy of mathematics and a selection of influential contemporary work, this much-needed introduction reveals the rich history of the subject. An Historical Introduction to the Philosophy of Mathematics: A Reader brings together an impressive collection of primary sources from ancient and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from key thinkers such as Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with contemporary thinkers. A selection of recent texts from philosophers including Quine, Putnam, Field and Maddy offering insights into the current state of the discipline clearly illustrates the development of the subject. Presenting historical background essential to understanding contemporary trends and a survey of recent work, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates and graduate students studying the philosophy of mathematics and an invaluable source book for working researchers.
Publisher: Bloomsbury Publishing
ISBN: 1472529480
Category : Philosophy
Languages : en
Pages : 849
Book Description
A comprehensive collection of historical readings in the philosophy of mathematics and a selection of influential contemporary work, this much-needed introduction reveals the rich history of the subject. An Historical Introduction to the Philosophy of Mathematics: A Reader brings together an impressive collection of primary sources from ancient and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from key thinkers such as Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with contemporary thinkers. A selection of recent texts from philosophers including Quine, Putnam, Field and Maddy offering insights into the current state of the discipline clearly illustrates the development of the subject. Presenting historical background essential to understanding contemporary trends and a survey of recent work, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates and graduate students studying the philosophy of mathematics and an invaluable source book for working researchers.
An Introduction to the Philosophy of Mathematics
Author: Mark Colyvan
Publisher: Cambridge University Press
ISBN: 0521826020
Category : Mathematics
Languages : en
Pages : 199
Book Description
A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.
Publisher: Cambridge University Press
ISBN: 0521826020
Category : Mathematics
Languages : en
Pages : 199
Book Description
A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.
An Historical Introduction to the Philosophy of Mathematics: A Reader
Author: Russell Marcus
Publisher: Bloomsbury Publishing
ISBN: 1472525345
Category : Philosophy
Languages : en
Pages : 849
Book Description
As the first comprehensive collection of historical readings in the philosophy of mathematics, this much-needed introduction reveals the rich history of the subject. Focusing on the philosophy of mathematics before the 20th-century, An Historical Introduction to the Philosophy of Mathematics: A Readerbrings together an impressive collection of primary sources from ancient, medieval and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with modern thinkers. While a selection of recent texts offering insights the current state of the discipline, clearly illustrate the development of the subject. Presenting historical background essential to understanding contemporary trends, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates studying the philosophy of mathematics.
Publisher: Bloomsbury Publishing
ISBN: 1472525345
Category : Philosophy
Languages : en
Pages : 849
Book Description
As the first comprehensive collection of historical readings in the philosophy of mathematics, this much-needed introduction reveals the rich history of the subject. Focusing on the philosophy of mathematics before the 20th-century, An Historical Introduction to the Philosophy of Mathematics: A Readerbrings together an impressive collection of primary sources from ancient, medieval and modern philosophy. Arranged chronologically and featuring introductory overviews explaining technical terms, this accessible reader is easy-to-follow and unrivaled in its historical scope. With selections from Plato, Aristotle, Descartes, Hume and Kant, it connects the major ideas of the ancients with modern thinkers. While a selection of recent texts offering insights the current state of the discipline, clearly illustrate the development of the subject. Presenting historical background essential to understanding contemporary trends, An Historical Introduction to the Philosophy of Mathematics: A Reader is required reading for undergraduates studying the philosophy of mathematics.
Philosophy of Mathematics
Author: David Bostock
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Lectures on the Philosophy of Mathematics
Author: Joel David Hamkins
Publisher: MIT Press
ISBN: 0262542234
Category : Mathematics
Languages : en
Pages : 350
Book Description
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
Publisher: MIT Press
ISBN: 0262542234
Category : Mathematics
Languages : en
Pages : 350
Book Description
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
The Philosophy of Set Theory
Author: Mary Tiles
Publisher: Courier Corporation
ISBN: 0486138550
Category : Mathematics
Languages : en
Pages : 258
Book Description
DIVBeginning with perspectives on the finite universe and classes and Aristotelian logic, the author examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory, and more. /div
Publisher: Courier Corporation
ISBN: 0486138550
Category : Mathematics
Languages : en
Pages : 258
Book Description
DIVBeginning with perspectives on the finite universe and classes and Aristotelian logic, the author examines permutations, combinations, and infinite cardinalities; numbering the continuum; Cantor's transfinite paradise; axiomatic set theory, and more. /div
Thinking about Mathematics
Author: Stewart Shapiro
Publisher: OUP Oxford
ISBN: 0192893068
Category : Philosophy
Languages : en
Pages : 323
Book Description
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
Publisher: OUP Oxford
ISBN: 0192893068
Category : Philosophy
Languages : en
Pages : 323
Book Description
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
Introduction to Mathematical Philosophy
Author: Bertrand Russell
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
Philosophy of Mathematics
Author: Øystein Linnebo
Publisher: Princeton University Press
ISBN: 069120229X
Category : Mathematics
Languages : en
Pages : 214
Book Description
A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.
Publisher: Princeton University Press
ISBN: 069120229X
Category : Mathematics
Languages : en
Pages : 214
Book Description
A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.
The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics
Author: John L. Bell
Publisher: Springer Nature
ISBN: 3030187071
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
Publisher: Springer Nature
ISBN: 3030187071
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.