Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20
Book Description
Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20
Book Description
Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.
Publisher:
ISBN:
Category :
Languages : en
Pages : 20
Book Description
Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.
Proceedings Of The International Heat Transfer Conference
Author: Lee
Publisher: CRC Press
ISBN: 9781560327974
Category : Science
Languages : en
Pages : 696
Book Description
This year's set of papers includes 23 Keynote Papers and 537 refereed General Papers, in seven volumes. Experts from around the world have combined to address the leading edge of research and practical innovations in convection, combustion, heat exchangers, two-phase flow, and much more. Whether one is involved in mechanical, chemical, nuclear, or energy engineering the quantity, international scope, and high quality of the contents make access to these volumes essential.
Publisher: CRC Press
ISBN: 9781560327974
Category : Science
Languages : en
Pages : 696
Book Description
This year's set of papers includes 23 Keynote Papers and 537 refereed General Papers, in seven volumes. Experts from around the world have combined to address the leading edge of research and practical innovations in convection, combustion, heat exchangers, two-phase flow, and much more. Whether one is involved in mechanical, chemical, nuclear, or energy engineering the quantity, international scope, and high quality of the contents make access to these volumes essential.
NASA Technical Paper
Author:
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 728
Book Description
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 728
Book Description
Thermal Engineering in Power Systems
Author: Ryoichi Amano
Publisher: WIT Press
ISBN: 1845640624
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Research and development in thermal engineering for power systems are of significant importance to many scientists who are engaged in research and design work in power-related industries and laboratories. This book focuses on variety of research areas including Components of Compressor and Turbines that are used for both electric power systems and aero engines, Fuel Cells, Energy Conversion, and Energy Reuse and Recycling Systems. To be competitive in today's market, power systems need to reduce the operating costs, increase capacity factors and deal with many other tough issues. Heat Transfer and fluid flow issues are of great significance and it is likely that a state-of-the-art edited book with reference to power systems will make a contribution for design and R&D engineers and the development towards sustainable energy systems.
Publisher: WIT Press
ISBN: 1845640624
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Research and development in thermal engineering for power systems are of significant importance to many scientists who are engaged in research and design work in power-related industries and laboratories. This book focuses on variety of research areas including Components of Compressor and Turbines that are used for both electric power systems and aero engines, Fuel Cells, Energy Conversion, and Energy Reuse and Recycling Systems. To be competitive in today's market, power systems need to reduce the operating costs, increase capacity factors and deal with many other tough issues. Heat Transfer and fluid flow issues are of great significance and it is likely that a state-of-the-art edited book with reference to power systems will make a contribution for design and R&D engineers and the development towards sustainable energy systems.
Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Blade Heat Transfer Measurements and Prediction in a Transonic Turbine Cascade
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 24
Book Description
Turbulence Measurements and Flow Modeling
Author: Ching Jen Chen
Publisher: CRC Press
ISBN: 9780891165583
Category : Science
Languages : en
Pages : 884
Book Description
Publisher: CRC Press
ISBN: 9780891165583
Category : Science
Languages : en
Pages : 884
Book Description
Aerothermodynamics of Aircraft Engine Components
Author: Gordon C. Oates
Publisher: AIAA
ISBN: 9781600860058
Category : Aerothermodynamics
Languages : en
Pages : 568
Book Description
Annotation Design and R & D engineers and students will value the comprehensive, meticulous coverage in this volume. Beginning with the basic principles and concepts of aeropropulsion combustion, chapters explore specific processes, limitations, and analytical methods as they bear on component design.
Publisher: AIAA
ISBN: 9781600860058
Category : Aerothermodynamics
Languages : en
Pages : 568
Book Description
Annotation Design and R & D engineers and students will value the comprehensive, meticulous coverage in this volume. Beginning with the basic principles and concepts of aeropropulsion combustion, chapters explore specific processes, limitations, and analytical methods as they bear on component design.
Paper
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 428
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 428
Book Description
The Effects of Inlet Turbulence and Rotor/stator Interactions on the Aerodynamics and Heat Transfer of a Large-scale Rotating Turbine Model, Volume 1
Author: Robert P. Dring
Publisher:
ISBN:
Category :
Languages : en
Pages : 180
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 180
Book Description