An Anisotropic Adaptive Method for the Solution of 3-D Inviscid and Viscous Compressible Flows

An Anisotropic Adaptive Method for the Solution of 3-D Inviscid and Viscous Compressible Flows PDF Author: Anna Tam
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 0

Get Book Here

Book Description
The solution of complex three-dimensional computational fluid dynamics (CFD) problems in general necessitates the use of a large number of mesh points to approximate directional flow features such as shocks, boundary layers, vortices and wakes. Such large grid sizes have motivated researchers to investigate methods of introducing very high aspect ratio elements to capture these features. In this Thesis, an anisotropic adaptive grid method has been developed for the solution of three-dimensional inviscid and viscous flows by the finite element method. An edge-based error estimate drives a mesh movement strategy that allows directional stretching and re-orientation of the grid with more mesh points introduced along those directions with rapidly changing gradients. The error estimate is built from a modified positive-definite form of the Hessian tensor of a selected solution variable or combination of variables. The resulting metric tensor controls the magnitude as well as, the direction of the grid stretching. The desired directionally adapted anisotropic mesh is constructed in physical space by a coordinate transformation based on this tensor. This research thus seeks a near-isotropic mesh in the transformed metric space and an equidistribution of the error over the mesh edges. The adaptive strategy can be considered to be the first 3-D implementation of an improved spring analogy-based algorithm originally applied on quadrilateral meshes. The adaptive methodology has been validated on various benchmark cases on both hexahedral and tetrahedral meshes. The numerical results obtained span inviscid and viscous flows, as well as internal and external aerodynamics. The effectiveness of the adaptive scheme to equidistribute the interpolation error over the edges of tetrahedral and hexahedral meshes has been gauged on analytical test cases where near-Gaussian distributions of the error were obtained. It was further demonstrated that the error estimate closely follows the true solution error. In analyzing the solution error of different sized non-adapted and adapted grids, one could not only achieve the same level of solution error by adapting and solving on a much coarser grid, but a significant reduction in solution time as well. All test cases revealed that the flow solver required lower amounts of artificial dissipation for solution on the final adapted grids. The current work should convincingly pave the way for its logical extension to unstructured grids, taking further advantage of refinement, coarsening and edge-swapping operations. It is strongly anticipated that this approach will shortly result in "optimal" grids.

An Anisotropic Adaptive Method for the Solution of 3-D Inviscid and Viscous Compressible Flows

An Anisotropic Adaptive Method for the Solution of 3-D Inviscid and Viscous Compressible Flows PDF Author: Anna Tam
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages : 0

Get Book Here

Book Description
The solution of complex three-dimensional computational fluid dynamics (CFD) problems in general necessitates the use of a large number of mesh points to approximate directional flow features such as shocks, boundary layers, vortices and wakes. Such large grid sizes have motivated researchers to investigate methods of introducing very high aspect ratio elements to capture these features. In this Thesis, an anisotropic adaptive grid method has been developed for the solution of three-dimensional inviscid and viscous flows by the finite element method. An edge-based error estimate drives a mesh movement strategy that allows directional stretching and re-orientation of the grid with more mesh points introduced along those directions with rapidly changing gradients. The error estimate is built from a modified positive-definite form of the Hessian tensor of a selected solution variable or combination of variables. The resulting metric tensor controls the magnitude as well as, the direction of the grid stretching. The desired directionally adapted anisotropic mesh is constructed in physical space by a coordinate transformation based on this tensor. This research thus seeks a near-isotropic mesh in the transformed metric space and an equidistribution of the error over the mesh edges. The adaptive strategy can be considered to be the first 3-D implementation of an improved spring analogy-based algorithm originally applied on quadrilateral meshes. The adaptive methodology has been validated on various benchmark cases on both hexahedral and tetrahedral meshes. The numerical results obtained span inviscid and viscous flows, as well as internal and external aerodynamics. The effectiveness of the adaptive scheme to equidistribute the interpolation error over the edges of tetrahedral and hexahedral meshes has been gauged on analytical test cases where near-Gaussian distributions of the error were obtained. It was further demonstrated that the error estimate closely follows the true solution error. In analyzing the solution error of different sized non-adapted and adapted grids, one could not only achieve the same level of solution error by adapting and solving on a much coarser grid, but a significant reduction in solution time as well. All test cases revealed that the flow solver required lower amounts of artificial dissipation for solution on the final adapted grids. The current work should convincingly pave the way for its logical extension to unstructured grids, taking further advantage of refinement, coarsening and edge-swapping operations. It is strongly anticipated that this approach will shortly result in "optimal" grids.

An Upwind Method for the Solution of the 3D Euler and Navier-Stokes Equations on Adaptively Meshes

An Upwind Method for the Solution of the 3D Euler and Navier-Stokes Equations on Adaptively Meshes PDF Author: Michael J. Aftosmis
Publisher:
ISBN:
Category : Navier-Stokes equations
Languages : en
Pages : 52

Get Book Here

Book Description
A new node based upwind scheme for the solution of the 3D Navier- Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three- dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.

An Upwind Method for the Solution of the 3D Euler and Navier-Stokes Equations on Adaptively Meshes

An Upwind Method for the Solution of the 3D Euler and Navier-Stokes Equations on Adaptively Meshes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A new node based upwind scheme for the solution of the 3D Navier- Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three- dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 992

Get Book Here

Book Description


Efficient High-order Accurate Unstructured Finite-volume Algorithms for Viscous and Inviscid Compressible Flows

Efficient High-order Accurate Unstructured Finite-volume Algorithms for Viscous and Inviscid Compressible Flows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
High-order accurate methods have the potential to dramatically reduce the computational time needed for aerodynamics simulations. This thesis studies the discretization and efficient convergence to steady state of the high-order accurate finite-volume method applied to the simplified problem of inviscid and laminar viscous two-dimensional flow equations. Each of the three manuscript chapters addresses a specific problem or limitation previously experienced with these schemes. The first manuscript addresses the absence of a method to maintain monotonicity of the solution at discontinuities while maintaining high-order accuracy in smooth regions. To resolve this, a slope limiter is carefully developed which meets these requirements while also maintaining the good convergence properties and computational efficiency of the least-squares reconstruction scheme. The second manuscript addresses the relatively poor convergence properties of Newton-GMRES methods applied to high-order accurate schemes. The globalization of the Newton method is improved through the use of an adaptive local timestep and of a line search algorithm. The poor convergence of the linear solver is improved through the efficient assembly of the exact flux Jacobian for use in preconditioning and to eliminate the additional residual evaluations needed by a matrix-free method. The third manuscript extends the discretization method to the viscous fluxes and boundary conditions. The discretization is demonstrated to achieve the expected order of accuracy. The fourth-order scheme is also shown to be more computationally efficient than the second-order scheme at achieving grid-converged values of drag for two-dimensional laminar flow over an airfoil.

American Doctoral Dissertations

American Doctoral Dissertations PDF Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 848

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704

Get Book Here

Book Description


International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1048

Get Book Here

Book Description


Computational Fluid Dynamics 2010

Computational Fluid Dynamics 2010 PDF Author: Alexander Kuzmin
Publisher: Springer Science & Business Media
ISBN: 3642178847
Category : Technology & Engineering
Languages : en
Pages : 902

Get Book Here

Book Description
The International Conference on Computational Fluid Dynamics is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid flow. The proceedings of the 2010 conference (ICCFD6) held in St Petersburg, Russia, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid dynamics.

The Finite Element Method Set

The Finite Element Method Set PDF Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 0080531679
Category : Technology & Engineering
Languages : en
Pages : 1863

Get Book Here

Book Description
The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference