Author: United States. Patent and Trademark Office
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 824
Book Description
Official Gazette of the United States Patent and Trademark Office
Author: United States. Patent and Trademark Office
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 824
Book Description
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 824
Book Description
Thin Films by Chemical Vapour Deposition
Author: C.E. Morosanu
Publisher: Elsevier
ISBN: 1483291731
Category : Technology & Engineering
Languages : en
Pages : 720
Book Description
The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.
Publisher: Elsevier
ISBN: 1483291731
Category : Technology & Engineering
Languages : en
Pages : 720
Book Description
The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1074
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1074
Book Description
The Physics and Chemistry of SiO2 and the Si-SiO2 Interface-3, 1996
Author: Hisham Z. Massoud
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 804
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 804
Book Description
Handbook of Thin Films, Five-Volume Set
Author: Hari Singh Nalwa
Publisher: Academic Press
ISBN: 0125129084
Category : Science
Languages : en
Pages : 661
Book Description
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures. Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Publisher: Academic Press
ISBN: 0125129084
Category : Science
Languages : en
Pages : 661
Book Description
This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures. Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.
Oxide Reliability
Author: D. J. Dumin
Publisher: World Scientific
ISBN: 9789810248420
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Presents in summary the state of our knowledge of oxide reliability.
Publisher: World Scientific
ISBN: 9789810248420
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Presents in summary the state of our knowledge of oxide reliability.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 872
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 872
Book Description
Scanning Electron Microscopy
Author: Ludwig Reimer
Publisher: Springer
ISBN: 3540389679
Category : Science
Languages : en
Pages : 538
Book Description
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
Publisher: Springer
ISBN: 3540389679
Category : Science
Languages : en
Pages : 538
Book Description
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
Amorphous Insulating Thin Films: Volume 284
Author: Jerzy Kanicki
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Semiconducting Chalcogenide Glass III
Author: Robert Fairman
Publisher: Elsevier
ISBN: 0080541062
Category : Science
Languages : en
Pages : 273
Book Description
Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. Semiconducting Chalcogenide Glass III: Applications of Chalcogenide Glasses is a comprehensive overview of designs of various chalcogenide glass devices are presented, including switches, phase inverters, voltage stabilizers, oscillators, indicators and display control circuits, memory devices, and sensors. A special chapter is devoted to chalcogenide glass applications in optical fibers. This collective monograph is intended to survey the current state of chalcogenide glass applications to facilitate further development. - The first collective monograph written by Eastern European scientists covering electrical and optical properties of chalcogenide vitreous semiconductors (CVS) - Contributions by B.G. Kolomiets, who discovered the properties of chalcogenide glass in 1955! - Provides evidence and discussion by authors from opposing positions
Publisher: Elsevier
ISBN: 0080541062
Category : Science
Languages : en
Pages : 273
Book Description
Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. Semiconducting Chalcogenide Glass III: Applications of Chalcogenide Glasses is a comprehensive overview of designs of various chalcogenide glass devices are presented, including switches, phase inverters, voltage stabilizers, oscillators, indicators and display control circuits, memory devices, and sensors. A special chapter is devoted to chalcogenide glass applications in optical fibers. This collective monograph is intended to survey the current state of chalcogenide glass applications to facilitate further development. - The first collective monograph written by Eastern European scientists covering electrical and optical properties of chalcogenide vitreous semiconductors (CVS) - Contributions by B.G. Kolomiets, who discovered the properties of chalcogenide glass in 1955! - Provides evidence and discussion by authors from opposing positions