Author: Paul Gray
Publisher:
ISBN: 9780988679696
Category :
Languages : en
Pages :
Book Description
Algebraic Reasoning is a textbook designed to provide high school students with a conceptual understanding of algebraic functions and to prepare them for Algebra 2..
Algebraic Reasoning
Author: Paul Gray
Publisher:
ISBN: 9780988679696
Category :
Languages : en
Pages :
Book Description
Algebraic Reasoning is a textbook designed to provide high school students with a conceptual understanding of algebraic functions and to prepare them for Algebra 2..
Publisher:
ISBN: 9780988679696
Category :
Languages : en
Pages :
Book Description
Algebraic Reasoning is a textbook designed to provide high school students with a conceptual understanding of algebraic functions and to prepare them for Algebra 2..
Algebraic Foundations of Many-Valued Reasoning
Author: R.L. Cignoli
Publisher: Springer Science & Business Media
ISBN: 9401594805
Category : Mathematics
Languages : en
Pages : 238
Book Description
This unique textbook states and proves all the major theorems of many-valued propositional logic and provides the reader with the most recent developments and trends, including applications to adaptive error-correcting binary search. The book is suitable for self-study, making the basic tools of many-valued logic accessible to students and scientists with a basic mathematical knowledge who are interested in the mathematical treatment of uncertain information. Stressing the interplay between algebra and logic, the book contains material never before published, such as a simple proof of the completeness theorem and of the equivalence between Chang's MV algebras and Abelian lattice-ordered groups with unit - a necessary prerequisite for the incorporation of a genuine addition operation into fuzzy logic. Readers interested in fuzzy control are provided with a rich deductive system in which one can define fuzzy partitions, just as Boolean partitions can be defined and computed in classical logic. Detailed bibliographic remarks at the end of each chapter and an extensive bibliography lead the reader on to further specialised topics.
Publisher: Springer Science & Business Media
ISBN: 9401594805
Category : Mathematics
Languages : en
Pages : 238
Book Description
This unique textbook states and proves all the major theorems of many-valued propositional logic and provides the reader with the most recent developments and trends, including applications to adaptive error-correcting binary search. The book is suitable for self-study, making the basic tools of many-valued logic accessible to students and scientists with a basic mathematical knowledge who are interested in the mathematical treatment of uncertain information. Stressing the interplay between algebra and logic, the book contains material never before published, such as a simple proof of the completeness theorem and of the equivalence between Chang's MV algebras and Abelian lattice-ordered groups with unit - a necessary prerequisite for the incorporation of a genuine addition operation into fuzzy logic. Readers interested in fuzzy control are provided with a rich deductive system in which one can define fuzzy partitions, just as Boolean partitions can be defined and computed in classical logic. Detailed bibliographic remarks at the end of each chapter and an extensive bibliography lead the reader on to further specialised topics.
Balance Benders Level 2
Author: Robert Femiano
Publisher:
ISBN: 9781601442277
Category :
Languages : en
Pages : 48
Book Description
Publisher:
ISBN: 9781601442277
Category :
Languages : en
Pages : 48
Book Description
Jousting Armadillos: An Introduction to Algebra - Student Text and Workbook
Author: Linus Christian Rollman
Publisher: Arbor Center for Teaching
ISBN: 0982136315
Category : Juvenile Nonfiction
Languages : en
Pages : 185
Book Description
First in the Arbor Algebra series. A writing-based, common sense, whimsical & engaging introduction to algebra for middle-grade math students.
Publisher: Arbor Center for Teaching
ISBN: 0982136315
Category : Juvenile Nonfiction
Languages : en
Pages : 185
Book Description
First in the Arbor Algebra series. A writing-based, common sense, whimsical & engaging introduction to algebra for middle-grade math students.
Accessible Algebra
Author: Anne Collins
Publisher: Stenhouse Publishers
ISBN: 1625310676
Category : Education
Languages : en
Pages : 237
Book Description
Accessible Algebra: 30 Modules to Promote Algebraic Reasoning, Grades 7-10 is for any pre-algebra or algebra teacher who wants to provide a rich and fulfilling experience for students as they develop new ways of thinking through and about algebra. The book includes 30 lessons that identifies a focal domain and standard in algebra, then lays out the common misconceptions and challenges students may face as they work to investigate and understand problems. Authors Anne Collins and Steven Benson conferred with students in real classrooms as the students explained what problem-solving strategies they were using or worked to ask the right questions that would lead them to a deeper understanding of algebra. Each scenario represents actual instances of an algebra classroom that demonstrate effective teaching methods, real-life student questions, and conversations about the problems at hand. Accessible Algebra works for students at every level. In each lesson there are sections on how to support struggling students, as well as ways to challenge students who may need more in-depth work. There are also numerous additional resources, including research articles and classroom vignettes.
Publisher: Stenhouse Publishers
ISBN: 1625310676
Category : Education
Languages : en
Pages : 237
Book Description
Accessible Algebra: 30 Modules to Promote Algebraic Reasoning, Grades 7-10 is for any pre-algebra or algebra teacher who wants to provide a rich and fulfilling experience for students as they develop new ways of thinking through and about algebra. The book includes 30 lessons that identifies a focal domain and standard in algebra, then lays out the common misconceptions and challenges students may face as they work to investigate and understand problems. Authors Anne Collins and Steven Benson conferred with students in real classrooms as the students explained what problem-solving strategies they were using or worked to ask the right questions that would lead them to a deeper understanding of algebra. Each scenario represents actual instances of an algebra classroom that demonstrate effective teaching methods, real-life student questions, and conversations about the problems at hand. Accessible Algebra works for students at every level. In each lesson there are sections on how to support struggling students, as well as ways to challenge students who may need more in-depth work. There are also numerous additional resources, including research articles and classroom vignettes.
Balance Math and More! Level 1
Author: Robert Femiano
Publisher:
ISBN: 9781601442765
Category : Mathematical recreations
Languages : en
Pages : 48
Book Description
Publisher:
ISBN: 9781601442765
Category : Mathematical recreations
Languages : en
Pages : 48
Book Description
Boolean Reasoning
Author: Frank Markham Brown
Publisher: Courier Corporation
ISBN: 0486164594
Category : Mathematics
Languages : en
Pages : 308
Book Description
Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
Publisher: Courier Corporation
ISBN: 0486164594
Category : Mathematics
Languages : en
Pages : 308
Book Description
Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds
Author: Carolyn Kieran
Publisher: Springer
ISBN: 3319683519
Category : Education
Languages : en
Pages : 443
Book Description
This book highlights new developments in the teaching and learning of algebraic thinking with 5- to 12-year-olds. Based on empirical findings gathered in several countries on five continents, it provides a wealth of best practices for teaching early algebra. Building on the work of the ICME-13 (International Congress on Mathematical Education) Topic Study Group 10 on Early Algebra, well-known authors such as Luis Radford, John Mason, Maria Blanton, Deborah Schifter, and Max Stephens, as well as younger scholars from Asia, Europe, South Africa, the Americas, Australia and New Zealand, present novel theoretical perspectives and their latest findings. The book is divided into three parts that focus on (i) epistemological/mathematical aspects of algebraic thinking, (ii) learning, and (iii) teaching and teacher development. Some of the main threads running through the book are the various ways in which structures can express themselves in children’s developing algebraic thinking, the roles of generalization and natural language, and the emergence of symbolism. Presenting vital new data from international contexts, the book provides additional support for the position that essential ways of thinking algebraically need to be intentionally fostered in instruction from the earliest grades.
Publisher: Springer
ISBN: 3319683519
Category : Education
Languages : en
Pages : 443
Book Description
This book highlights new developments in the teaching and learning of algebraic thinking with 5- to 12-year-olds. Based on empirical findings gathered in several countries on five continents, it provides a wealth of best practices for teaching early algebra. Building on the work of the ICME-13 (International Congress on Mathematical Education) Topic Study Group 10 on Early Algebra, well-known authors such as Luis Radford, John Mason, Maria Blanton, Deborah Schifter, and Max Stephens, as well as younger scholars from Asia, Europe, South Africa, the Americas, Australia and New Zealand, present novel theoretical perspectives and their latest findings. The book is divided into three parts that focus on (i) epistemological/mathematical aspects of algebraic thinking, (ii) learning, and (iii) teaching and teacher development. Some of the main threads running through the book are the various ways in which structures can express themselves in children’s developing algebraic thinking, the roles of generalization and natural language, and the emergence of symbolism. Presenting vital new data from international contexts, the book provides additional support for the position that essential ways of thinking algebraically need to be intentionally fostered in instruction from the earliest grades.
Algebra in the Early Grades
Author: James J. Kaput
Publisher: Routledge
ISBN: 1351577093
Category : Education
Languages : en
Pages : 549
Book Description
This volume is the first to offer a comprehensive, research-based, multi-faceted look at issues in early algebra. In recent years, the National Council for Teachers of Mathematics has recommended that algebra become a strand flowing throughout the K-12 curriculum, and the 2003 RAND Mathematics Study Panel has recommended that algebra be “the initial topical choice for focused and coordinated research and development [in K-12 mathematics].” This book provides a rationale for a stronger and more sustained approach to algebra in school, as well as concrete examples of how algebraic reasoning may be developed in the early grades. It is organized around three themes: The Nature of Early Algebra Students’ Capacity for Algebraic Thinking Issues of Implementation: Taking Early Algebra to the Classrooms. The contributors to this landmark volume have been at the forefront of an effort to integrate algebra into the existing early grades mathematics curriculum. They include scholars who have been developing the conceptual foundations for such changes as well as researchers and developers who have led empirical investigations in school settings. Algebra in the Early Grades aims to bridge the worlds of research, practice, design, and theory for educators, researchers, students, policy makers, and curriculum developers in mathematics education.
Publisher: Routledge
ISBN: 1351577093
Category : Education
Languages : en
Pages : 549
Book Description
This volume is the first to offer a comprehensive, research-based, multi-faceted look at issues in early algebra. In recent years, the National Council for Teachers of Mathematics has recommended that algebra become a strand flowing throughout the K-12 curriculum, and the 2003 RAND Mathematics Study Panel has recommended that algebra be “the initial topical choice for focused and coordinated research and development [in K-12 mathematics].” This book provides a rationale for a stronger and more sustained approach to algebra in school, as well as concrete examples of how algebraic reasoning may be developed in the early grades. It is organized around three themes: The Nature of Early Algebra Students’ Capacity for Algebraic Thinking Issues of Implementation: Taking Early Algebra to the Classrooms. The contributors to this landmark volume have been at the forefront of an effort to integrate algebra into the existing early grades mathematics curriculum. They include scholars who have been developing the conceptual foundations for such changes as well as researchers and developers who have led empirical investigations in school settings. Algebra in the Early Grades aims to bridge the worlds of research, practice, design, and theory for educators, researchers, students, policy makers, and curriculum developers in mathematics education.
Approaches to Algebra
Author: N. Bednarz
Publisher: Springer Science & Business Media
ISBN: 9400917325
Category : Education
Languages : en
Pages : 342
Book Description
In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.
Publisher: Springer Science & Business Media
ISBN: 9400917325
Category : Education
Languages : en
Pages : 342
Book Description
In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.