Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201
Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Model Theory in Algebra, Analysis and Arithmetic
Author: Lou van den Dries
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201
Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Publisher: Springer
ISBN: 3642549365
Category : Mathematics
Languages : en
Pages : 201
Book Description
Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.
Model Theory : An Introduction
Author: David Marker
Publisher: Springer Science & Business Media
ISBN: 0387227342
Category : Mathematics
Languages : en
Pages : 342
Book Description
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Publisher: Springer Science & Business Media
ISBN: 0387227342
Category : Mathematics
Languages : en
Pages : 342
Book Description
Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
Model Theory and Algebraic Geometry
Author: Elisabeth Bouscaren
Publisher: Springer
ISBN: 3540685219
Category : Mathematics
Languages : en
Pages : 223
Book Description
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Publisher: Springer
ISBN: 3540685219
Category : Mathematics
Languages : en
Pages : 223
Book Description
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Mathematical Logic and Model Theory
Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 1447121767
Category : Mathematics
Languages : en
Pages : 198
Book Description
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
Publisher: Springer Science & Business Media
ISBN: 1447121767
Category : Mathematics
Languages : en
Pages : 198
Book Description
Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.
A Guide to Classical and Modern Model Theory
Author: Annalisa Marcja
Publisher: Springer Science & Business Media
ISBN: 9400708122
Category : Philosophy
Languages : en
Pages : 377
Book Description
This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.
Publisher: Springer Science & Business Media
ISBN: 9400708122
Category : Philosophy
Languages : en
Pages : 377
Book Description
This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.
A Course in Model Theory
Author: Katrin Tent
Publisher: Cambridge University Press
ISBN: 052176324X
Category : Mathematics
Languages : en
Pages : 259
Book Description
Concise introduction to current topics in model theory, including simple and stable theories.
Publisher: Cambridge University Press
ISBN: 052176324X
Category : Mathematics
Languages : en
Pages : 259
Book Description
Concise introduction to current topics in model theory, including simple and stable theories.
Topological Model Theory
Author: Jörg Flum
Publisher: Springer
ISBN: 3540385444
Category : Mathematics
Languages : en
Pages : 161
Book Description
Publisher: Springer
ISBN: 3540385444
Category : Mathematics
Languages : en
Pages : 161
Book Description
Algebraic Theory of Quasivarieties
Author: Viktor A. Gorbunov
Publisher: Springer Science & Business Media
ISBN: 0306110636
Category : Mathematics
Languages : en
Pages : 314
Book Description
The theory of quasivarieties constitutes an independent direction in algebra and mathematical logic and specializes in a fragment of first-order logic-the so-called universal Horn logic. This treatise uniformly presents the principal directions of the theory from an effective algebraic approach developed by the author himself. A revolutionary exposition, this influential text contains a number of results never before published in book form, featuring in-depth commentary for applications of quasivarieties to graphs, convex geometries, and formal languages. Key features include coverage of the Birkhoff-Mal'tsev problem on the structure of lattices of quasivarieties, helpful exercises, and an extensive list of references.
Publisher: Springer Science & Business Media
ISBN: 0306110636
Category : Mathematics
Languages : en
Pages : 314
Book Description
The theory of quasivarieties constitutes an independent direction in algebra and mathematical logic and specializes in a fragment of first-order logic-the so-called universal Horn logic. This treatise uniformly presents the principal directions of the theory from an effective algebraic approach developed by the author himself. A revolutionary exposition, this influential text contains a number of results never before published in book form, featuring in-depth commentary for applications of quasivarieties to graphs, convex geometries, and formal languages. Key features include coverage of the Birkhoff-Mal'tsev problem on the structure of lattices of quasivarieties, helpful exercises, and an extensive list of references.
The Theory of Algebraic Numbers: Second Edition
Author: Harry Pollard
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175
Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
Publisher: American Mathematical Soc.
ISBN: 1614440093
Category : Mathematics
Languages : en
Pages : 175
Book Description
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition. The principal changes are the correction of misprints, the expansion or simplification of some arguments, and the omission of the final chapter on units in order to make way for the introduction of some two hundred problems.
Model Theory and the Philosophy of Mathematical Practice
Author: John T. Baldwin
Publisher: Cambridge University Press
ISBN: 1107189217
Category : Mathematics
Languages : en
Pages : 365
Book Description
Recounts the modern transformation of model theory and its effects on the philosophy of mathematics and mathematical practice.
Publisher: Cambridge University Press
ISBN: 1107189217
Category : Mathematics
Languages : en
Pages : 365
Book Description
Recounts the modern transformation of model theory and its effects on the philosophy of mathematics and mathematical practice.